
    fThD                     r    S r SSKJr  SSKJr  SSKJrJr  \R                  " \	5      r
 " S S\\5      rS/rg)zTextNet model configuration    )PretrainedConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   V   ^  \ rS rSrSrSrSSSSSSS/S	S	/ S
QSSS	S	4U 4S jjrSrU =r$ )TextNetConfig   ar  
This is the configuration class to store the configuration of a [`TextNextModel`]. It is used to instantiate a
TextNext model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[czczup/textnet-base](https://huggingface.co/czczup/textnet-base). Configuration objects inherit from
[`PretrainedConfig`] and can be used to control the model outputs.Read the documentation from [`PretrainedConfig`]
for more information.

Args:
    stem_kernel_size (`int`, *optional*, defaults to 3):
        The kernel size for the initial convolution layer.
    stem_stride (`int`, *optional*, defaults to 2):
        The stride for the initial convolution layer.
    stem_num_channels (`int`, *optional*, defaults to 3):
        The num of channels in input for the initial convolution layer.
    stem_out_channels (`int`, *optional*, defaults to 64):
        The num of channels in out for the initial convolution layer.
    stem_act_func (`str`, *optional*, defaults to `"relu"`):
        The activation function for the initial convolution layer.
    image_size (`Tuple[int, int]`, *optional*, defaults to `[640, 640]`):
        The size (resolution) of each image.
    conv_layer_kernel_sizes (`List[List[List[int]]]`, *optional*):
        A list of stage-wise kernel sizes. If `None`, defaults to:
        `[[[3, 3], [3, 3], [3, 3]], [[3, 3], [1, 3], [3, 3], [3, 1]], [[3, 3], [3, 3], [3, 1], [1, 3]], [[3, 3], [3, 1], [1, 3], [3, 3]]]`.
    conv_layer_strides (`List[List[int]]`, *optional*):
        A list of stage-wise strides. If `None`, defaults to:
        `[[1, 2, 1], [2, 1, 1, 1], [2, 1, 1, 1], [2, 1, 1, 1]]`.
    hidden_sizes (`List[int]`, *optional*, defaults to `[64, 64, 128, 256, 512]`):
        Dimensionality (hidden size) at each stage.
    batch_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the batch normalization layers.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    out_features (`List[str]`, *optional*):
        If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
        (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
        corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
    out_indices (`List[int]`, *optional*):
        If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
        many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
        If unset and `out_features` is unset, will default to the last stage.

Examples:

```python
>>> from transformers import TextNetConfig, TextNetBackbone

>>> # Initializing a TextNetConfig
>>> configuration = TextNetConfig()

>>> # Initializing a model (with random weights)
>>> model = TextNetBackbone(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```textnet      @   relui  N)r   r         i   gh㈵>g{Gz?c                 6  > [         TU ]  " S	0 UD6  Uc3  SS/SS/SS//SS/SS/SS/SS//SS/SS/SS/SS//SS/SS/SS/SS///nUc  / SQ/ SQ/ SQ/ SQ/nXl        X l        X0l        X@l        XPl        X`l        Xpl        Xl	        Xl
        Xl        Xl        U R                   Vs/ s H  n[        U5      PM     snU l        S/[        SS5       Vs/ s H  nSU 3PM
     sn-   U l        [#        XU R                   S9u  U l        U l        g s  snf s  snf )
Nr      )r   r   r   )r   r   r   r   stem   stage)out_featuresout_indicesstage_names )super__init__stem_kernel_sizestem_stridestem_num_channelsstem_out_channelsstem_act_func
image_sizeconv_layer_kernel_sizesconv_layer_stridesinitializer_rangehidden_sizesbatch_norm_epslendepthsranger   r   _out_features_out_indices)selfr   r   r   r   r    r!   r"   r#   r%   r&   r$   r   r   kwargslayeridx	__class__s                    i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/textnet/configuration_textnet.pyr   TextNetConfig.__init__U   sZ   " 	"6""*Q!Q!Q(Q!Q!Q!Q0Q!Q!Q!Q0Q!Q!Q!Q0	'# %"+\<!V 0&!2!2*$'>$"4!2(,/3/K/KL/Kes5z/KL"8a&Lse}&LL0Z%DL\L\1
-D- M&Ls   )DD)r*   r+   r&   r"   r#   r(   r%   r!   r$   r   r    r   r   r   r   )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r0   s   @r1   r   r      sG    7r J : $,/
 /
    r   N)r7   transformersr   transformers.utilsr   !transformers.utils.backbone_utilsr   r   
get_loggerr3   loggerr   __all__r   r;   r1   <module>rB      sB    " ) & m 
		H	%k
')9 k
\ 
r;   