
    fTh{                     r    S r SSKJr  SSKJr  SSKJrJr  \R                  " \	5      r
 " S S\\5      rS/rg)z&Swinv2 Transformer model configuration   )PretrainedConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   r   ^  \ rS rSrSrSrSSS.rSSS	S
/ SQ/ SQS/ SQSSSSSSSSSSSS4U 4S jjrSrU =r	$ )Swinv2Config   a  
This is the configuration class to store the configuration of a [`Swinv2Model`]. It is used to instantiate a Swin
Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
[microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256)
architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    image_size (`int`, *optional*, defaults to 224):
        The size (resolution) of each image.
    patch_size (`int`, *optional*, defaults to 4):
        The size (resolution) of each patch.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    embed_dim (`int`, *optional*, defaults to 96):
        Dimensionality of patch embedding.
    depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
        Depth of each layer in the Transformer encoder.
    num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
        Number of attention heads in each layer of the Transformer encoder.
    window_size (`int`, *optional*, defaults to 7):
        Size of windows.
    pretrained_window_sizes (`list(int)`, *optional*, defaults to `[0, 0, 0, 0]`):
        Size of windows during pretraining.
    mlp_ratio (`float`, *optional*, defaults to 4.0):
        Ratio of MLP hidden dimensionality to embedding dimensionality.
    qkv_bias (`bool`, *optional*, defaults to `True`):
        Whether or not a learnable bias should be added to the queries, keys and values.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings and encoder.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    drop_path_rate (`float`, *optional*, defaults to 0.1):
        Stochastic depth rate.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
        `"selu"` and `"gelu_new"` are supported.
    use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
        Whether or not to add absolute position embeddings to the patch embeddings.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the layer normalization layers.
    encoder_stride (`int`, *optional*, defaults to 32):
        Factor to increase the spatial resolution by in the decoder head for masked image modeling.
    out_features (`List[str]`, *optional*):
        If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
        (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
        corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
    out_indices (`List[int]`, *optional*):
        If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
        many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
        If unset and `out_features` is unset, will default to the last stage.

Example:

```python
>>> from transformers import Swinv2Config, Swinv2Model

>>> # Initializing a Swinv2 microsoft/swinv2-tiny-patch4-window8-256 style configuration
>>> configuration = Swinv2Config()

>>> # Initializing a model (with random weights) from the microsoft/swinv2-tiny-patch4-window8-256 style configuration
>>> model = Swinv2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```swinv2	num_heads
num_layers)num_attention_headsnum_hidden_layers      r   `   )   r      r   )r   r            )    r   r   r   g      @Tg        g?geluFg{Gz?gh㈵>    Nc                    > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        [        U5      U l        X`l	        Xpl
        Xl        Xl        Xl        Xl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        S/[-        S[        U5      S-   5       Vs/ s H  nSU 3PM
     sn-   U l        [1        UUU R.                  S9u  U l        U l        [7        US[        U5      S-
  -  -  5      U l        g s  snf )Nstem   stage)out_featuresout_indicesstage_namesr    )super__init__
image_size
patch_sizenum_channels	embed_dimdepthslenr   r   window_sizepretrained_window_sizes	mlp_ratioqkv_biashidden_dropout_probattention_probs_dropout_probdrop_path_rate
hidden_actuse_absolute_embeddingslayer_norm_epsinitializer_rangeencoder_strideranger    r   _out_features_out_indicesinthidden_size)selfr$   r%   r&   r'   r(   r   r*   r+   r,   r-   r.   r/   r0   r1   r2   r4   r3   r5   r   r   kwargsidx	__class__s                          g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/swinv2/configuration_swinv2.pyr#   Swinv2Config.__init__i   s	   0 	"6"$$("f+"&'>$" #6 ,H),$'>$,!2,"8aVWX@Y&Z@Yse}@Y&ZZ0Z%;DL\L\1
-D-
 y1Vq+AAB '[s   -D)r7   r8   r/   r(   r0   r'   r5   r1   r.   r:   r$   r4   r3   r,   r&   r   r   r%   r+   r-   r    r2   r*   )
__name__
__module____qualname____firstlineno____doc__
model_typeattribute_mapr#   __static_attributes____classcell__)r>   s   @r?   r   r      sj    FP J  +)M   ,%( %+3C 3C    r   N)rE   configuration_utilsr   utilsr   utils.backbone_utilsr   r   
get_loggerrA   loggerr   __all__r!   rJ   r?   <module>rQ      sD    - 3  c 
		H	%CC&(8 CCL 
rJ   