
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)z'Swin2SR Transformer model configuration   )PretrainedConfig)loggingc                   r   ^  \ rS rSrSrSrSSSS.rSS	S
SS/ SQ/ SQSSSSSSSSSSSSSS4U 4S jjrSrU =r	$ )Swin2SRConfig   a  
This is the configuration class to store the configuration of a [`Swin2SRModel`]. It is used to instantiate a Swin
Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
[caidas/swin2sr-classicalsr-x2-64](https://huggingface.co/caidas/swin2sr-classicalsr-x2-64) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    image_size (`int`, *optional*, defaults to 64):
        The size (resolution) of each image.
    patch_size (`int`, *optional*, defaults to 1):
        The size (resolution) of each patch.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    num_channels_out (`int`, *optional*, defaults to `num_channels`):
        The number of output channels. If not set, it will be set to `num_channels`.
    embed_dim (`int`, *optional*, defaults to 180):
        Dimensionality of patch embedding.
    depths (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`):
        Depth of each layer in the Transformer encoder.
    num_heads (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`):
        Number of attention heads in each layer of the Transformer encoder.
    window_size (`int`, *optional*, defaults to 8):
        Size of windows.
    mlp_ratio (`float`, *optional*, defaults to 2.0):
        Ratio of MLP hidden dimensionality to embedding dimensionality.
    qkv_bias (`bool`, *optional*, defaults to `True`):
        Whether or not a learnable bias should be added to the queries, keys and values.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings and encoder.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    drop_path_rate (`float`, *optional*, defaults to 0.1):
        Stochastic depth rate.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
        `"selu"` and `"gelu_new"` are supported.
    use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
        Whether or not to add absolute position embeddings to the patch embeddings.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the layer normalization layers.
    upscale (`int`, *optional*, defaults to 2):
        The upscale factor for the image. 2/3/4/8 for image super resolution, 1 for denoising and compress artifact
        reduction
    img_range (`float`, *optional*, defaults to 1.0):
        The range of the values of the input image.
    resi_connection (`str`, *optional*, defaults to `"1conv"`):
        The convolutional block to use before the residual connection in each stage.
    upsampler (`str`, *optional*, defaults to `"pixelshuffle"`):
        The reconstruction reconstruction module. Can be 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None.

Example:

```python
>>> from transformers import Swin2SRConfig, Swin2SRModel

>>> # Initializing a Swin2SR caidas/swin2sr-classicalsr-x2-64 style configuration
>>> configuration = Swin2SRConfig()

>>> # Initializing a model (with random weights) from the caidas/swin2sr-classicalsr-x2-64 style configuration
>>> model = Swin2SRModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```swin2sr	embed_dim	num_heads
num_layers)hidden_sizenum_attention_headsnum_hidden_layers@      r   N   )   r   r   r   r   r      g       @Tg        g?geluFg{Gz?gh㈵>   g      ?1convpixelshufflec                 Z  > [         TU ]  " S0 UD6  Xl        X l        X0l        Uc  UOUU l        XPl        X`l        [        U5      U l	        Xpl
        Xl        Xl        Xl        Xl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        UU l        g )N )super__init__
image_size
patch_sizenum_channelsnum_channels_outr	   depthslenr   r
   window_size	mlp_ratioqkv_biashidden_dropout_probattention_probs_dropout_probdrop_path_rate
hidden_actuse_absolute_embeddingslayer_norm_epsinitializer_rangeupscale	img_rangeresi_connection	upsampler)selfr   r   r   r   r	   r    r
   r"   r#   r$   r%   r&   r'   r(   r)   r+   r*   r,   r-   r.   r/   kwargs	__class__s                          i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/swin2sr/configuration_swin2sr.pyr   Swin2SRConfig.__init__g   s    2 	"6"$$(0@0HN^"f+"&" #6 ,H),$'>$,!2"."    )r&   r    r'   r	   r(   r%   r   r-   r+   r*   r#   r   r   r
   r   r   r$   r.   r/   r,   r)   r"   )
__name__
__module____qualname____firstlineno____doc__
model_typeattribute_mapr   __static_attributes____classcell__)r2   s   @r3   r   r      sn    DL J #*)M !$%( % -0# 0#r5   r   N)
r:   configuration_utilsr   utilsr   
get_loggerr6   loggerr   __all__r   r5   r3   <module>rD      s<    . 3  
		H	%#$ #D 
r5   