
    fTh                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  SSKJr  SS	KJrJr  \R                   " \5      r " S
 S\\5      r " S S\
5      rSS/rg)z$Swin Transformer model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   l   ^  \ rS rSrSrSrSSS.rSSS	S
/ SQ/ SQSSSSSSSSSSSSS4U 4S jjrSrU =r	$ )
SwinConfig   a  
This is the configuration class to store the configuration of a [`SwinModel`]. It is used to instantiate a Swin
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Swin
[microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224)
architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    image_size (`int`, *optional*, defaults to 224):
        The size (resolution) of each image.
    patch_size (`int`, *optional*, defaults to 4):
        The size (resolution) of each patch.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    embed_dim (`int`, *optional*, defaults to 96):
        Dimensionality of patch embedding.
    depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
        Depth of each layer in the Transformer encoder.
    num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
        Number of attention heads in each layer of the Transformer encoder.
    window_size (`int`, *optional*, defaults to 7):
        Size of windows.
    mlp_ratio (`float`, *optional*, defaults to 4.0):
        Ratio of MLP hidden dimensionality to embedding dimensionality.
    qkv_bias (`bool`, *optional*, defaults to `True`):
        Whether or not a learnable bias should be added to the queries, keys and values.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings and encoder.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    drop_path_rate (`float`, *optional*, defaults to 0.1):
        Stochastic depth rate.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
        `"selu"` and `"gelu_new"` are supported.
    use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
        Whether or not to add absolute position embeddings to the patch embeddings.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the layer normalization layers.
    encoder_stride (`int`, *optional*, defaults to 32):
        Factor to increase the spatial resolution by in the decoder head for masked image modeling.
    out_features (`List[str]`, *optional*):
        If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
        (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
        corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.
    out_indices (`List[int]`, *optional*):
        If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
        many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
        If unset and `out_features` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.

Example:

```python
>>> from transformers import SwinConfig, SwinModel

>>> # Initializing a Swin microsoft/swin-tiny-patch4-window7-224 style configuration
>>> configuration = SwinConfig()

>>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration
>>> model = SwinModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```swin	num_heads
num_layers)num_attention_headsnum_hidden_layers      r   `   )   r      r   )r   r            g      @Tg        g?geluFg{Gz?gh㈵>    Nc                   > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        [        U5      U l        X`l	        Xpl
        Xl        Xl        Xl        Xl        Xl        Xl        Xl        UU l        Xl        UU l        [+        US[        U5      S-
  -  -  5      U l        S/[/        S[        U5      S-   5       Vs/ s H  nSU 3PM
     sn-   U l        [3        UUU R0                  S9u  U l        U l        g s  snf )Nr      stemstage)out_featuresout_indicesstage_names )super__init__
image_size
patch_sizenum_channels	embed_dimdepthslenr   r   window_size	mlp_ratioqkv_biashidden_dropout_probattention_probs_dropout_probdrop_path_rate
hidden_actuse_absolute_embeddingslayer_norm_epsinitializer_rangeencoder_strideinthidden_sizeranger%   r   _out_features_out_indices)selfr)   r*   r+   r,   r-   r   r/   r0   r1   r2   r3   r4   r5   r6   r8   r7   r9   r#   r$   kwargsidx	__class__s                         c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/swin/configuration_swin.pyr(   SwinConfig.__init__o   s   . 	"6"$$("f+"&" #6 ,H),$'>$,!2, y1Vq+AAB"8aVWX@Y&Z@Yse}@Y&ZZ0Z%;DL\L\1
-D- '[s   D)r=   r>   r3   r-   r4   r,   r9   r5   r2   r;   r)   r8   r7   r0   r+   r   r   r*   r1   r%   r6   r/   )
__name__
__module____qualname____firstlineno____doc__
model_typeattribute_mapr(   __static_attributes____classcell__)rB   s   @rC   r   r      se    FP J  +)M  %( %)1
 1
    r   c                   |    \ rS rSr\R
                  " S5      r\S\\	\\
\	4   4   4S j5       r\S\4S j5       rSrg)SwinOnnxConfig   z1.11returnc                 (    [        SSSSSS.4/5      $ )Npixel_valuesbatchr+   heightwidth)r   r    r   r   r   r?   s    rC   inputsSwinOnnxConfig.inputs   s&    WHQX!YZ
 	
rN   c                     g)Ng-C6?r&   rX   s    rC   atol_for_validation"SwinOnnxConfig.atol_for_validation   s    rN   r&   N)rE   rF   rG   rH   r   parsetorch_onnx_minimum_versionpropertyr   strr:   rY   floatr\   rL   r&   rN   rC   rP   rP      sX    !(v!6
WS#X%6 67 
 
 U  rN   rP   N)rI   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   utils.backbone_utilsr   r   
get_loggerrE   loggerr   rP   __all__r&   rN   rC   <module>rm      s]    + #   3   c 
		H	%A
$&6 A
HZ   )
*rN   