
    fTh                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
R                  " \5      r " S S	\5      r " S
 S\5      rS	S/rg)zSqueezeBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   \   ^  \ rS rSrSrSr                    SU 4S jjrSrU =r$ )SqueezeBertConfig   a  
This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a
SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SqueezeBERT
[squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by
        the `inputs_ids` passed when calling [`SqueezeBertModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):

    pad_token_id (`int`, *optional*, defaults to 0):
        The ID of the token in the word embedding to use as padding.
    embedding_size (`int`, *optional*, defaults to 768):
        The dimension of the word embedding vectors.

    q_groups (`int`, *optional*, defaults to 4):
        The number of groups in Q layer.
    k_groups (`int`, *optional*, defaults to 4):
        The number of groups in K layer.
    v_groups (`int`, *optional*, defaults to 4):
        The number of groups in V layer.
    post_attention_groups (`int`, *optional*, defaults to 1):
        The number of groups in the first feed forward network layer.
    intermediate_groups (`int`, *optional*, defaults to 4):
        The number of groups in the second feed forward network layer.
    output_groups (`int`, *optional*, defaults to 4):
        The number of groups in the third feed forward network layer.

Examples:

```python
>>> from transformers import SqueezeBertConfig, SqueezeBertModel

>>> # Initializing a SqueezeBERT configuration
>>> configuration = SqueezeBertConfig()

>>> # Initializing a model (with random weights) from the configuration above
>>> model = SqueezeBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```
squeezebertc                   > [         TU ]  " SSU0UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        g )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsembedding_sizeq_groupsk_groupsv_groupspost_attention_groupsintermediate_groupsoutput_groups)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   kwargs	__class__s                         q/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/squeezebert/configuration_squeezebert.pyr   SqueezeBertConfig.__init__g   s    0 	=l=f=$&!2#6 $!2#6 ,H)'>$.!2,,   %:"#6 *    )r   r   r   r   r   r   r#   r   r    r   r   r   r   r$   r"   r   r   r!   r   )i:w        r,   i   gelu皙?r.   i      g{Gz?g-q=r   r+      r0   r0      r0   r0   )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r'   s   @r(   r
   r
      sY    FP J %( #+,+ ,+r*   r
   c                   @    \ rS rSr\S\\\\\4   4   4S j5       rSr	g)SqueezeBertOnnxConfig   returnc                 b    U R                   S:X  a  SSSS.nOSSS.n[        SU4SU4S	U4/5      $ )
Nzmultiple-choicebatchchoicesequence)r   r1   r/   )r   r1   	input_idsattention_masktoken_type_ids)taskr   )r%   dynamic_axiss     r(   inputsSqueezeBertOnnxConfig.inputs   sO    99))&8
CL&:6Ll+!<0!<0
 	
r*   r   N)
r2   r3   r4   r5   propertyr   strintrG   r8   r   r*   r(   r;   r;      s.    
WS#X%6 67 
 
r*   r;   N)r6   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr2   loggerr
   r;   __all__r   r*   r(   <module>rT      sT    & #  3   
		H	%w+( w+v
J 
   7
8r*   