
    fTh                         S r SSKJrJrJr  SSKJr  SSKJr  SSK	J
r
JrJrJr  SSKJrJr   " S S	\
S
S9r " S S\S
S9r " S S\5      rS/rg)z)
Image/Text processor class for SigLIP2.
    )ListOptionalUnion   )BatchFeature)
ImageInput)ImagesKwargsProcessingKwargsProcessorMixinUnpack)PreTokenizedInput	TextInputc                   6    \ rS rSr% \\   \S'   \\   \S'   Srg)Siglip2ImagesKwargs   max_num_patches
patch_size N)__name__
__module____qualname____firstlineno__r   int__annotations____static_attributes__r       f/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/siglip2/processing_siglip2.pyr   r      s    c]"r   r   F)totalc                   8    \ rS rSr% \\S'   SSSS.SSS	.S
.rSrg)Siglip2ProcessorKwargs    images_kwargs
max_lengthT@   )padding
truncationr#         )r   r   )text_kwargsr"   r   N)r   r   r   r   r   r   	_defaultsr   r   r   r   r    r        s,    && $
  #

Ir   r    c                      ^  \ rS rSrSrSS/rSrSrU 4S jr    SS\	\
\\\   \\\      4      S	\	\
\S
\\   \S
   4      S\\   S\4S jjrS rS r\S 5       rSrU =r$ )Siglip2Processor0   a  
Constructs a Siglip2 processor which wraps a Siglip2 image processor and a Gemma tokenizer into a single processor.

[`Siglip2Processor`] offers all the functionalities of [`Siglip2ImageProcessor`] and [`GemmaTokenizerFast`]. See the
[`~Siglip2Processor.__call__`] and [`~Siglip2Processor.decode`] for more information.

Args:
    image_processor ([`Siglip2ImageProcessor`]):
        The image processor is a required input.
    tokenizer ([`GemmaTokenizerFast`]):
        The tokenizer is a required input.
image_processor	tokenizerAutoImageProcessorAutoTokenizerc                 $   > [         TU ]  X5        g N)super__init__)selfr.   r/   	__class__s      r   r5   Siglip2Processor.__init__C   s    4r   imagestextr   kwargsreturnc                 T   U R                   " [        4SU R                  R                  0UD6nUc  Uc  [	        S5      eUb  U R                  " U40 US   D6nUb  U R
                  " U40 US   D6nUb  Ub  WR                  W5        U$ Ub  W$ US   S   n	[        [        S0 WD6U	S9$ )	a  
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to GemmaTokenizerFast's [`~GemmaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` argument to
Siglip2ImageProcessor's [`~Siglip2ImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.

Args:
    images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
        The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
        tensor. Both channels-first and channels-last formats are supported.
    text (`str`, `List[str]`, `List[List[str]]`):
        The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
        (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
        `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
    padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`):
        Select a strategy to pad the returned sequences (according to the model's padding side and padding
        index) among:
        - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
          acceptable input length for the model if that argument is not provided.
        - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
          sequence if provided).
        - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
          lengths).
    max_length (`int`, *optional*, defaults to 64):
        Maximum length of the returned list and optionally padding length (see above).
    truncation (`bool`, *optional*, defaults to `True`):
        Activates truncation to cut input sequences longer than `max_length` to `max_length`.
    return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'pt'`):
        If set, will return tensors of a particular framework. Acceptable values are:

        - `'tf'`: Return TensorFlow `tf.constant` objects.
        - `'pt'`: Return PyTorch `torch.Tensor` objects.
        - `'np'`: Return NumPy `np.ndarray` objects.
        - `'jax'`: Return JAX `jnp.ndarray` objects.

Returns:
    [`BatchFeature`]: A [`BatchFeature`] with the following fields:

    - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
    - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
      `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
      `None`).
    - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
    - **pixel_attention_mask** -- Attention mask for the pixel values. Returned when `images` is not `None`.
    - **spatial_shapes** -- The number of horizontal and vertical patches per image.
      Returned when `images` is not `None`.
tokenizer_init_kwargsz?You have to specify either text or images. Both cannot be none.r)   r"   common_kwargsreturn_tensors)datatensor_typer   )	_merge_kwargsr    r/   init_kwargs
ValueErrorr.   updater   dict)
r6   r9   r:   audiovideosr;   output_kwargsencodingimage_featuresr@   s
             r   __call__Siglip2Processor.__call__F   s    p **"
"&.."<"<
 
 <FN^__~~dKmM.JKH!11&[M/<Z[N 2OON+OO*?;<LMNT%;N%;XXr   c                 :    U R                   R                  " U0 UD6$ )z
This method forwards all its arguments to Siglip2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
)r/   decoder6   argsr;   s      r   rP   Siglip2Processor.decode   s    
 ~~$$d5f55r   c                 :    U R                   R                  " U0 UD6$ )z
This method forwards all its arguments to Siglip2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
)r/   batch_decoderQ   s      r   rU   Siglip2Processor.batch_decode   s    
 ~~**D;F;;r   c                     U R                   R                  nU R                  R                  n[        [        R                  X-   5      5      $ r3   )r/   model_input_namesr.   listrG   fromkeys)r6   tokenizer_input_namesimage_processor_input_namess      r   rX   "Siglip2Processor.model_input_names   s<     $ @ @&*&:&:&L&L#DMM"7"UVWWr   r   )NNNN)r   r   r   r   __doc__
attributesimage_processor_classtokenizer_classr5   r   r   r   r   r   r   r    r   rM   rP   rU   propertyrX   r   __classcell__)r7   s   @r   r,   r,   0   s     $[1J0%O5
 Y]lpNYz4
+;T$zBR=SSTUNY uY(;T)_dSfNgghiNY /0NY 
NY`6< X Xr   r,   N)r^   typingr   r   r   feature_extraction_utilsr   image_utilsr   processing_utilsr	   r
   r   r   tokenization_utils_baser   r   r   r    r,   __all__r   r   r   <module>rj      sY    ) ( 4 % V V C,e 
-U  xX~ xXv 
r   