
    fTh                         S r SSKJrJrJr  SSKJr  SSKJr  SSK	J
r
  SSKJrJrJrJr  SSKJr   " S	 S
\
5      rS
/rg)z(
Image/Text processor class for SigLIP.
    )ListOptionalUnion   )BatchFeature)
ImageInput)ProcessorMixin)PaddingStrategyPreTokenizedInput	TextInputTruncationStrategy)
TensorTypec                      ^  \ rS rSrSrSS/rSrSrU 4S jrSSS	SS\	R                  4S
\\\\\   \\   4   S\S\\\\4   S\\\\4   S\\   S\\\\	4      S\4S jjrS rS r\S 5       rSrU =r$ )SiglipProcessor   a  
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.

[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.

Args:
    image_processor ([`SiglipImageProcessor`]):
        The image processor is a required input.
    tokenizer ([`SiglipTokenizer`]):
        The tokenizer is a required input.
image_processor	tokenizer)SiglipImageProcessorSiglipImageProcessorFastAutoTokenizerc                 $   > [         TU ]  X5        g N)super__init__)selfr   r   	__class__s      d/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/siglip/processing_siglip.pyr   SiglipProcessor.__init__.   s    4    NFtextimagespadding
truncation
max_lengthreturn_tensorsreturnc                     Uc  Uc  [        S5      eUb  U R                  XX4US9nUb  U R                  X&S9nUb  Ub  WR                  W5        U$ Ub  W$ [	        [        S0 WD6US9$ )a  
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` argument to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.

Args:
    text (`str`, `List[str]`, `List[List[str]]`):
        The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
        (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
        `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
    images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
        The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
        tensor. Both channels-first and channels-last formats are supported.
    padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
        Select a strategy to pad the returned sequences (according to the model's padding side and padding
        index) among:
        - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
          sequence if provided).
        - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
          acceptable input length for the model if that argument is not provided.
        - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
          lengths).
    max_length (`int`, *optional*):
        Maximum length of the returned list and optionally padding length (see above).
    truncation (`bool`, *optional*):
        Activates truncation to cut input sequences longer than `max_length` to `max_length`.
    return_tensors (`str` or [`~utils.TensorType`], *optional*):
        If set, will return tensors of a particular framework. Acceptable values are:

        - `'tf'`: Return TensorFlow `tf.constant` objects.
        - `'pt'`: Return PyTorch `torch.Tensor` objects.
        - `'np'`: Return NumPy `np.ndarray` objects.
        - `'jax'`: Return JAX `jnp.ndarray` objects.

Returns:
    [`BatchFeature`]: A [`BatchFeature`] with the following fields:

    - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
    - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
      `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
      `None`).
    - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
z?You have to specify either text or images. Both cannot be none.)r%   r"   r#   r$   )r%   )datatensor_type )
ValueErrorr   r   updater   dict)	r   r    r!   r"   r#   r$   r%   encodingimage_featuress	            r   __call__SiglipProcessor.__call__1   s    n <FN^__~~Whr & H !11&1XN 2OON+OOT%;N%;XXr   c                 :    U R                   R                  " U0 UD6$ )z
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
)r   decoder   argskwargss      r   r3   SiglipProcessor.decode{   s    
 ~~$$d5f55r   c                 :    U R                   R                  " U0 UD6$ )z
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
)r   batch_decoder4   s      r   r9   SiglipProcessor.batch_decode   s    
 ~~**D;F;;r   c                     U R                   R                  nU R                  R                  n[        [        R                  X-   5      5      $ r   )r   model_input_namesr   listr-   fromkeys)r   tokenizer_input_namesimage_processor_input_namess      r   r<   !SiglipProcessor.model_input_names   s>     !% @ @&*&:&:&L&L#DMM"7"UVWWr   r*   )__name__
__module____qualname____firstlineno____doc__
attributesimage_processor_classtokenizer_classr   r   PYTORCHr   r   r   r   r   boolstrr
   r   r   intr   r0   r3   r9   propertyr<   __static_attributes____classcell__)r   s   @r   r   r      s     $[1JP%O5
 _c!5:;?$(;E;M;MHYI0$y/4HYCZZ[HY HY tS/12	HY
 $%778HY SMHY !sJ!78HY 
HYT6< X Xr   r   N)rF   typingr   r   r   feature_extraction_utilsr   image_utilsr   processing_utilsr	   tokenization_utils_baser
   r   r   r   utilsr   r   __all__r*   r   r   <module>rX      s?    ) ( 4 % . h h rXn rXj 
r   