
    fTh                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  SSKJr  SS	KJrJr  \R                   " \5      r " S
 S\\5      r " S S\
5      rSS/rg)zResNet model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc            
       X   ^  \ rS rSrSrSrSS/rSS/ SQ/ S	QSS
SSSS4
U 4S jjrSrU =r	$ )ResNetConfig   a  
This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the ResNet
[microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    embedding_size (`int`, *optional*, defaults to 64):
        Dimensionality (hidden size) for the embedding layer.
    hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
        Dimensionality (hidden size) at each stage.
    depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
        Depth (number of layers) for each stage.
    layer_type (`str`, *optional*, defaults to `"bottleneck"`):
        The layer to use, it can be either `"basic"` (used for smaller models, like resnet-18 or resnet-34) or
        `"bottleneck"` (used for larger models like resnet-50 and above).
    hidden_act (`str`, *optional*, defaults to `"relu"`):
        The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
        are supported.
    downsample_in_first_stage (`bool`, *optional*, defaults to `False`):
        If `True`, the first stage will downsample the inputs using a `stride` of 2.
    downsample_in_bottleneck (`bool`, *optional*, defaults to `False`):
        If `True`, the first conv 1x1 in ResNetBottleNeckLayer will downsample the inputs using a `stride` of 2.
    out_features (`List[str]`, *optional*):
        If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
        (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
        corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.
    out_indices (`List[int]`, *optional*):
        If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
        many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
        If unset and `out_features` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.

Example:
```python
>>> from transformers import ResNetConfig, ResNetModel

>>> # Initializing a ResNet resnet-50 style configuration
>>> configuration = ResNetConfig()

>>> # Initializing a model (with random weights) from the resnet-50 style configuration
>>> model = ResNetModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```
resnetbasic
bottleneckr   @   )   i   i   i   )r         r   reluFNc                   > [         TU ]  " S0 UD6  XPR                  ;  a*  [        SU SSR	                  U R                  5       35      eXl        X l        X0l        X@l        XPl	        X`l
        Xpl        Xl        S/[        S[        U5      S-   5       Vs/ s H  nSU 3PM
     sn-   U l        [!        XU R                  S9u  U l        U l        g s  snf )	Nzlayer_type=z is not one of ,stem   stage)out_featuresout_indicesstage_names )super__init__layer_types
ValueErrorjoinnum_channelsembedding_sizehidden_sizesdepths
layer_type
hidden_actdownsample_in_first_stagedownsample_in_bottleneckrangelenr   r   _out_features_out_indices)selfr&   r'   r(   r)   r*   r+   r,   r-   r   r   kwargsidx	__class__s                g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/resnet/configuration_resnet.pyr"   ResNetConfig.__init__Y   s     	"6"---{:,ochhtO_O_F`Eabcc(,($$)B&(@%"8aVWX@Y&Z@Yse}@Y&ZZ0Z%DL\L\1
-D- '[s   C)r0   r1   r)   r-   r,   r'   r+   r(   r*   r&   r   )
__name__
__module____qualname____firstlineno____doc__
model_typer#   r"   __static_attributes____classcell__)r5   s   @r6   r   r      sD    4l JL)K +"'!&
 
    r   c                   |    \ rS rSr\R
                  " S5      r\S\\	\\
\	4   4   4S j5       r\S\4S j5       rSrg)ResNetOnnxConfigx   z1.11returnc                 (    [        SSSSSS.4/5      $ )Npixel_valuesbatchr&   heightwidth)r   r      r   r   r2   s    r6   inputsResNetOnnxConfig.inputs{   s&    WHQX!YZ
 	
r@   c                     g)NgMbP?r    rK   s    r6   atol_for_validation$ResNetOnnxConfig.atol_for_validation   s    r@   r    N)r8   r9   r:   r;   r   parsetorch_onnx_minimum_versionpropertyr   strintrL   floatrO   r>   r    r@   r6   rB   rB   x   sX    !(v!6
WS#X%6 67 
 
 U  r@   rB   N)r<   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   utils.backbone_utilsr   r   
get_loggerr8   loggerr   rB   __all__r    r@   r6   <module>ra      s]    ! #   3   c 
		H	%V
&(8 V
rz   -
.r@   