
    fTh{                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
R                  " \5      r " S S	\5      r " S
 S\5      rS	S/rg)zRemBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   Z   ^  \ rS rSrSrSr                   SU 4S jjrSrU =r$ )RemBertConfig   a  
This is the configuration class to store the configuration of a [`RemBertModel`]. It is used to instantiate an
RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the RemBERT
[google/rembert](https://huggingface.co/google/rembert) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 250300):
        Vocabulary size of the RemBERT model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`]. Vocabulary size of the model.
        Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of
        [`RemBertModel`].
    hidden_size (`int`, *optional*, defaults to 1152):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 18):
        Number of attention heads for each attention layer in the Transformer encoder.
    input_embedding_size (`int`, *optional*, defaults to 256):
        Dimensionality of the input embeddings.
    output_embedding_size (`int`, *optional*, defaults to 1664):
        Dimensionality of the output embeddings.
    intermediate_size (`int`, *optional*, defaults to 4608):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
        The dropout ratio for the attention probabilities.
    classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the classifier layer when fine-tuning.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    is_decoder (`bool`, *optional*, defaults to `False`):
        Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.

Example:

```python
>>> from transformers import RemBertModel, RemBertConfig

>>> # Initializing a RemBERT rembert style configuration
>>> configuration = RemBertConfig()

>>> # Initializing a model from the rembert style configuration
>>> model = RemBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```rembertc                    > [         TU ]  " SUUUS.UD6  Xl        XPl        X`l        Xl        X l        X0l        X@l        Xpl	        Xl
        Xl        Xl        Xl        Xl        Xl        Xl        UU l        SU l        g )N)pad_token_idbos_token_ideos_token_idF )super__init__
vocab_sizeinput_embedding_sizeoutput_embedding_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probclassifier_dropout_probinitializer_rangetype_vocab_sizelayer_norm_eps	use_cachetie_word_embeddings)selfr   r   r   r   r   r   r   r   r   r   r   r   r!   r    r"   r#   r   r   r   kwargs	__class__s                        i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/rembert/configuration_rembert.pyr   RemBertConfig.__init__b   s    . 	sl\hslrs$$8!%:"'>$&!2#6 !2$#6 ,H)'>$!2.,"#(     )r   r   r   r   r   r    r   r   r"   r   r   r   r   r$   r!   r#   r   )i i            i  i   gelu        r/   g?i      g{Gz?g-q=Tr   i8  i9  )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r'   s   @r(   r
   r
      sV    AF J  "%( # #))) ))r*   r
   c                   X    \ rS rSr\S\\\\\4   4   4S j5       r\S\	4S j5       r
Srg)RemBertOnnxConfig   returnc                 b    U R                   S:X  a  SSSS.nOSSS.n[        SU4SU4S	U4/5      $ )
Nzmultiple-choicebatchchoicesequence)r      r0   )r   rA   	input_idsattention_masktoken_type_ids)taskr   )r%   dynamic_axiss     r(   inputsRemBertOnnxConfig.inputs   sO    99))&8
CL&:6Ll+!<0!<0
 	
r*   c                     g)Ng-C6?r   )r%   s    r(   atol_for_validation%RemBertOnnxConfig.atol_for_validation   s    r*   r   N)r1   r2   r3   r4   propertyr   strintrG   floatrJ   r7   r   r*   r(   r:   r:      sI    
WS#X%6 67 
 
 U  r*   r:   N)r5   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr1   loggerr
   r:   __all__r   r*   r(   <module>rX      sT    " #  3   
		H	%o)$ o)d
 ( /
0r*   