
    fTh¦                        S SK JrJrJrJr  S SKrS SKJr  SSKJr  SSK	J
r
JrJrJr  SSKJr  SSKJr  SS	KJr  SS
KJr  SSKJr  SSKJrJrJrJrJr  SSKJrJ r   SSK!J"r"J#r#  SSK$J%r%  SSK&J'r'J(r(J)r)J*r*J+r+  SSK,J-r-  \*" 5       (       a  S SK.J/r/  SSK0J1r1  \+Rd                  " \35      r4 " S S\Rj                  5      r6S r7S?S jr8S\Rr                  S\:S\Rr                  4S jr; S@S\Rj                  S\Rr                  S\Rr                  S \Rr                  S!\\Rr                     S"\<S#\<4S$ jjr= " S% S&\Rj                  5      r>\" S'5       " S( S)\Rj                  5      5       r? " S* S+\5      r@\( " S, S-\#5      5       rA " S. S/\Rj                  5      rB\( " S0 S1\A5      5       rC " S2 S3\\'5      rD\( " S4 S5\A\5      5       rE\(" S6S79 " S8 S9\A5      5       rF\( " S: S;\A5      5       rG\( " S< S=\A5      5       rH/ S>QrIg)A    )CallableOptionalTupleUnionN)nn   )ACT2FN)CacheDynamicCacheSlidingWindowCacheStaticCache)GenerationMixin)use_kernel_forward_from_hub)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPastQuestionAnsweringModelOutput SequenceClassifierOutputWithPastTokenClassifierOutput)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)
LossKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )Qwen2Config)	BlockMask)make_flex_block_causal_maskc                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )Qwen2MLP*   c                   > [         TU ]  5         Xl        UR                  U l        UR                  U l        [
        R                  " U R                  U R                  SS9U l        [
        R                  " U R                  U R                  SS9U l        [
        R                  " U R                  U R                  SS9U l	        [        UR                     U l        g NFbias)super__init__confighidden_sizeintermediate_sizer   Linear	gate_projup_proj	down_projr	   
hidden_actact_fnselfr/   	__class__s     `/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/qwen2/modeling_qwen2.pyr.   Qwen2MLP.__init__+   s    !--!'!9!94#3#3T5K5KRWXyy!1!143I3IPUV4#9#94;K;KRWXV../    c                     U R                  U R                  U R                  U5      5      U R                  U5      -  5      nU$ N)r5   r7   r3   r4   )r9   xr5   s      r;   forwardQwen2MLP.forward5   s6    NN4;;t~~a/@#ADLLQRO#ST	r=   )r7   r/   r5   r3   r0   r1   r4   )__name__
__module____qualname____firstlineno__r.   rA   __static_attributes____classcell__r:   s   @r;   r'   r'   *   s    0 r=   r'   c                     U SSU R                   S   S-  24   nU SU R                   S   S-  S24   n[        R                  " U* U4SS9$ )z*Rotates half the hidden dims of the input..N   dim)shapetorchcat)r@   x1x2s      r;   rotate_halfrT   :   sZ    	
3"!''"+"""	#B	
3q ""	#B99rc2YB''r=   c                     UR                  U5      nUR                  U5      nX-  [        U 5      U-  -   nX-  [        U5      U-  -   nXg4$ )a  Applies Rotary Position Embedding to the query and key tensors.

Args:
    q (`torch.Tensor`): The query tensor.
    k (`torch.Tensor`): The key tensor.
    cos (`torch.Tensor`): The cosine part of the rotary embedding.
    sin (`torch.Tensor`): The sine part of the rotary embedding.
    position_ids (`torch.Tensor`, *optional*):
        Deprecated and unused.
    unsqueeze_dim (`int`, *optional*, defaults to 1):
        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
)	unsqueezerT   )qkcossinposition_idsunsqueeze_dimq_embedk_embeds           r;   apply_rotary_pos_embr_   A   sS    ( --
&C
--
&Cw;q>C/0Gw;q>C/0Gr=   hidden_statesn_repreturnc                     U R                   u  p#pEUS:X  a  U $ U SS2SS2SSS2SS24   R                  X#XU5      n U R                  X#U-  XE5      $ )z
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
r"   N)rO   expandreshape)r`   ra   batchnum_key_value_headsslenhead_dims         r;   	repeat_kvrj   \   s_    
 2?1D1D.Ez!!Qa"23::5W\dlmM  e(CTTTr=   modulequerykeyvalueattention_maskscalingdropoutc                 @   [        X R                  5      n[        X0R                  5      n	[        R                  " XR	                  SS5      5      U-  n
Ub"  US S 2S S 2S S 2S UR
                  S   24   nX-   n
[        R                  R                  U
S[        R                  S9R                  UR                  5      n
[        R                  R                  XU R                  S9n
[        R                  " X5      nUR	                  SS5      R                  5       nX4$ )NrL   r   rK   )rN   dtype)ptrainingr"   )rj   num_key_value_groupsrP   matmul	transposerO   r   
functionalsoftmaxfloat32tort   rq   rv   
contiguous)rk   rl   rm   rn   ro   rp   rq   kwargs
key_statesvalue_statesattn_weightscausal_maskattn_outputs                r;   eager_attention_forwardr   h   s     3 ; ;<JU$?$?@L<<';';Aq'ABWLL!$Q1.D
0@0@0D.D%DE#1==((2U]](SVVW\WbWbcL==((6??([L,,|:K''1-88:K$$r=   c                   F  ^  \ rS rSrSrS\S\4U 4S jjr  SS\R                  S\
\R                  \R                  4   S\\R                     S	\\   S
\\R                     S\\   S\
\R                  \\R                     \\
\R                        4   4S jjrSrU =r$ )Qwen2Attention   z=Multi-headed attention from 'Attention Is All You Need' paperr/   	layer_idxc                    > [         TU ]  5         Xl        X l        [	        USUR
                  UR                  -  5      U l        UR                  UR                  -  U l	        U R                  S-  U l
        UR                  U l        SU l        [        R                  " UR
                  UR                  U R                  -  SS9U l        [        R                  " UR
                  UR                  U R                  -  SS9U l        [        R                  " UR
                  UR                  U R                  -  SS9U l        [        R                  " UR                  U R                  -  UR
                  SS9U l        g )Nri   g      Tr+   F)r-   r.   r/   r   getattrr0   num_attention_headsri   rg   rw   rp   attention_dropout	is_causalr   r2   q_projk_projv_projo_projr9   r/   r   r:   s      r;   r.   Qwen2Attention.__init__   s(   "
F4F4F&JdJd4de$*$>$>&B\B\$\!}}d*!'!9!9ii 2 2F4N4NQUQ^Q^4^eijii 2 2F4N4NQUQ^Q^4^eijii 2 2F4N4NQUQ^Q^4^eijii : :T]] JFL^L^ejkr=   r`   position_embeddingsro   past_key_valuecache_positionr   rb   c                    UR                   S S n/ UQSPU R                  P7nU R                  U5      R                  U5      R	                  SS5      n	U R                  U5      R                  U5      R	                  SS5      n
U R                  U5      R                  U5      R	                  SS5      nUu  p[        XX5      u  pUb$  XUS.nUR                  XU R                  U5      u  pS nU R                  R                  (       aR  [        U R                  SS 5      b:  U R                  U R                  R                  :  a  U R                  R                  n[        nU R                  R                   S:w  ad  U R                  R                   S:X  a-  UR#                  SS	5      (       a  [$        R'                  S
5        O[(        U R                  R                      nU" U U	U
UU4U R*                  (       d  SOU R,                  U R.                  US.UD6u  nnUR0                  " / UQSP76 R3                  5       nU R5                  U5      nUU4$ )NrK   r"   rL   )rZ   rY   r   sliding_windoweagersdpaoutput_attentionsFz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        )rq   rp   r   )rO   ri   r   viewry   r   r   r_   updater   r/   use_sliding_windowr   max_window_layersr   r   _attn_implementationgetloggerwarning_oncer   rv   r   rp   re   r~   r   )r9   r`   r   ro   r   r   r   input_shapehidden_shapequery_statesr   r   rY   rZ   cache_kwargsr   attention_interfacer   r   s                      r;   rA   Qwen2Attention.forward   s!    $))#2.88b8$--8{{=166|DNNqRST[[/44\BLLQPQR
{{=166|DNNqRST&#7RU#[ %#&nUL'5'<'<ZW[WeWegs't$JKK**%5t<H$++"?"??![[77N(?;;++w6{{//69fjjI\^c>d>d##L
 '>dkk>^>^&_#$7
%
  $}}C$2H2HLL)
%
 
%
!\ "));;;;FFHkk+.L((r=   )r   r/   ri   r   r   r   rw   r   r   rp   r   )NN)rC   rD   rE   rF   __doc__r#   intr.   rP   Tensorr   r   r
   
LongTensorr   r   rA   rG   rH   rI   s   @r;   r   r      s    Gl{ ls l& +/598)||8) #5<<#=>8) !.	8)
 !8) !!1!128) -.8) 
u||Xell3XeELL>Q5RR	S8) 8)r=   r   RMSNormc                   8   ^  \ rS rSrSU 4S jjrS rS rSrU =r$ )Qwen2RMSNorm   c                    > [         TU ]  5         [        R                  " [        R
                  " U5      5      U l        X l        g)z+
Qwen2RMSNorm is equivalent to T5LayerNorm
N)r-   r.   r   	ParameterrP   onesweightvariance_epsilon)r9   r0   epsr:   s      r;   r.   Qwen2RMSNorm.__init__   s/     	ll5::k#:; #r=   c                    UR                   nUR                  [        R                  5      nUR	                  S5      R                  SSS9nU[        R                  " X0R                  -   5      -  nU R                  UR                  U5      -  $ )NrL   rK   T)keepdim)	rt   r}   rP   r|   powmeanrsqrtr   r   )r9   r`   input_dtypevariances       r;   rA   Qwen2RMSNorm.forward   sw    #))%((7 $$Q',,R,>%H?T?T4T(UU{{]--k:::r=   c                 ^    [        U R                  R                  5       SU R                   3$ )Nz, eps=)tupler   rO   r   r9   s    r;   
extra_reprQwen2RMSNorm.extra_repr   s*    ))*+6$2G2G1HIIr=   )r   r   )gư>)	rC   rD   rE   rF   r.   rA   r   rG   rH   rI   s   @r;   r   r      s    $;J Jr=   r   c                     ^  \ rS rSrS\S\4U 4S jjr       SS\R                  S\	\R                     S\	\R                     S\	\   S	\	\   S
\	\   S\	\R                     S\	\\R                  \R                  4      S\\   S\\R                   \	\\R                   \R                   4      4   4S jjrSrU =r$ )Qwen2DecoderLayer   r/   r   c                   > [         TU ]  5         UR                  U l        [        XS9U l        [        U5      U l        [        UR                  UR                  S9U l	        [        UR                  UR                  S9U l
        UR                  (       a5  UR                  S:w  a$  [        R                  SUR                   S35        g g g )N)r/   r   r   flash_attention_2z=Sliding Window Attention is enabled but not implemented for `z)`; unexpected results may be encountered.)r-   r.   r0   r   	self_attnr'   mlpr   rms_norm_epsinput_layernormpost_attention_layernormr   r   r   r   r   s      r;   r.   Qwen2DecoderLayer.__init__   s    !--'vKF#+F,>,>FDWDWX(4V5G5GVM`M`(a%$$)D)DH[)[OPVPkPkOl m9 9 *\$r=   r`   ro   r[   r   r   	use_cacher   r   r   rb   c	                     Un
U R                  U5      nU R                  " SUUUUUUUUS.U	D6u  pX-   nUn
U R                  U5      nU R                  U5      nX-   nU4nU(       a  X4-  nU$ )N)r`   ro   r[   r   r   r   r   r    )r   r   r   r   )r9   r`   ro   r[   r   r   r   r   r   r   residualself_attn_weightsoutputss                r;   rA   Qwen2DecoderLayer.forward   s     !,,]; ,0>> 
,
')%)/) 3
,
 
,
( !0 !55mD/ 0 "++Gr=   )r0   r   r   r   r   )NNNFFNN)rC   rD   rE   rF   r#   r   r.   rP   r   r   r   r
   boolr   r   r   FloatTensorrA   rG   rH   rI   s   @r;   r   r      s   { s   2637*.,1$)59KO'||' !.' u//0	'
 !' $D>' D>' !!1!12' &eELL%,,,F&GH' -.' 
u  (51B1BEDUDU1U+V"WW	X' 'r=   r   c                   N    \ rS rSr\rSrSrS/rS/r	Sr
SrSrSrSrSrSrS rSrg)	Qwen2PreTrainedModeli  modelTr   past_key_valuesc                    U R                   R                  n[        U[        R                  5      (       aW  UR
                  R                  R                  SUS9  UR                  b%  UR                  R                  R                  5         g g [        U[        R                  5      (       ad  UR
                  R                  R                  SUS9  UR                  b2  UR
                  R                  UR                     R                  5         g g [        U[        5      (       a&  UR
                  R                  R                  S5        g g )Nr   )r   stdg      ?)r/   initializer_range
isinstancer   r2   r   datanormal_r,   zero_	Embeddingpadding_idxr   fill_)r9   rk   r   s      r;   _init_weights"Qwen2PreTrainedModel._init_weights*  s    kk++fbii((MM&&CS&9{{&  &&( '--MM&&CS&9!!-""6#5#56<<> .--MM$$S) .r=   r   N)rC   rD   rE   rF   r#   config_classbase_model_prefixsupports_gradient_checkpointing_no_split_modules_skip_keys_device_placement_supports_flash_attn_2_supports_sdpa_supports_flex_attn_supports_cache_class_supports_quantized_cache_supports_static_cache_supports_attention_backendr   rG   r   r=   r;   r   r     sS    L&*#,-#4"5!N  $!"&*r=   r   c                   l   ^  \ rS rSrSS\4U 4S jjjr\R                  " 5       \S 5       5       r	Sr
U =r$ )Qwen2RotaryEmbeddingi8  r/   c                   > [         TU ]  5         [        US5      (       aH  UR                  b;  UR                  R	                  SUR                  R	                  S5      5      U l        OSU l        UR                  U l        UR                  U l        Xl	        [        U R
                     U l        U R                  U R                  U5      u  o0l        U R                  SUSS9  U R                  U l        g )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)r-   r.   hasattrr   r   r   max_position_embeddingsmax_seq_len_cachedoriginal_max_seq_lenr/   r   rope_init_fnattention_scalingregister_bufferr   original_inv_freq)r9   r/   devicer   r:   s       r;   r.   Qwen2RotaryEmbedding.__init__9  s    6>**v/B/B/N#0044[&BUBUBYBYZ`BabDN&DN"("@"@$*$B$B!/?+/+<+<T[[&+Q((ZeD!%r=   c                 b   U R                   S S S 2S 4   R                  5       R                  UR                  S   SS5      R	                  UR
                  5      nUS S 2S S S 24   R                  5       n[        UR
                  R                  [        5      (       a0  UR
                  R                  S:w  a  UR
                  R                  OSn[        R                  " USS9   UR                  5       UR                  5       -  R                  SS5      n[        R                  " Xf4SS	9nUR                  5       U R                  -  nUR                  5       U R                  -  n	S S S 5        WR	                  UR                   S
9W	R	                  UR                   S
94$ ! , (       d  f       N@= f)Nr   rK   r"   mpscpuF)device_typeenabledrL   rM   )rt   )r   floatrd   rO   r}   r
  r   r   strrP   autocastry   rQ   rY   r  rZ   rt   )
r9   r@   r[   inv_freq_expandedposition_ids_expandedr  freqsembrY   rZ   s
             r;   rA   Qwen2RotaryEmbedding.forwardJ  sR    !MM$4-8>>@GGHZHZ[\H]_acdehhijiqiqr ,QaZ 8 > > @'1!((--'E'E!((--[`J`ahhmmfk^^UC&,,.1F1L1L1NNYYZ[]^_E))UN3C'')d444C'')d444C	 D vvAGGv$cff177f&;;; DCs   $BF  
F.)r  r/   r  r	  r  r  r   r?   )rC   rD   rE   rF   r#   r.   rP   no_gradr   rA   rG   rH   rI   s   @r;   r   r   8  s6    /{ / /" ]]_<  <r=   r   c                     ^  \ rS rSrS\4U 4S jjrS rS r\\	         SS\
\R                     S\
\R                     S\
\R                     S	\
\   S
\
\R                     S\
\   S\
\   S\
\   S\
\R                     S\\   S\4S jj5       5       r SS\\R                  S4   S\R                  S\R                  S	\S\4
S jjr\S\R                  S\S\S\R2                  S\R                  S\S\S	\4S j5       rSrU =r$ )
Qwen2ModeliZ  r/   c           	        > [         TU ]  U5        UR                  U l        UR                  U l        [
        R                  " UR                  UR                  U R                  5      U l        [
        R                  " [        UR                  5       Vs/ s H  n[        X5      PM     sn5      U l        [        UR                  UR                  S9U l        [#        US9U l        SU l        U R)                  5         g s  snf )Nr   )r/   F)r-   r.   pad_token_idr   
vocab_sizer   r   r0   embed_tokens
ModuleListrangenum_hidden_layersr   layersr   r   normr   
rotary_embgradient_checkpointing	post_initr   s      r;   r.   Qwen2Model.__init__\  s     !.. ++LL):):F<N<NPTP`P`ammCHIaIaCbcCbiv1Cbc
 !!3!39L9LM	.f=&+# 	 ds   C?c                     U R                   $ r?   r  r   s    r;   get_input_embeddingsQwen2Model.get_input_embeddingsl  s       r=   c                     Xl         g r?   r*  r9   rn   s     r;   set_input_embeddingsQwen2Model.set_input_embeddingso  s    !r=   	input_idsro   r[   r   inputs_embedsr   r   output_hidden_statesr   flash_attn_kwargsrb   c
                 J   Ub  UOU R                   R                  nUb  UOU R                   R                  nUb  UOU R                   R                  nUS L US L-  (       a  [	        S5      eU R
                  (       a/  U R                  (       a  U(       a  [        R                  S5        Sn[        U[        S 5      [        45      (       d  [	        S5      eUc  U R                  U5      nU(       a  Uc
  [        5       nU	cD  Ub  UR                  5       OSn[        R                   " XUR"                  S   -   UR$                  S9n	Uc  U	R'                  S5      nU R)                  X%XU5      nUnU R+                  X5      nU(       a  SOS nU(       a  SOS nU R,                  S U R                   R.                    H7  nU(       a  X4-  nU" U4UUUUUU	US	.U
D6nUS   nU(       d  M.  UUS   4-  nM9     U R1                  U5      nU(       a  X4-  n[3        UU(       a  UOS UUS
9$ )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.FzBThe `past_key_values` should be either a `Cache` object or `None`.r   r"   r
  r   )ro   r[   r   r   r   r   r   )last_hidden_stater   r`   
attentions)r/   r   r3  r   
ValueErrorr&  rv   r   r   r   r   r
   r  r   get_seq_lengthrP   arangerO   r
  rV   _update_causal_maskr%  r#  r"  r$  r   )r9   r1  ro   r[   r   r2  r   r   r3  r   r4  past_seen_tokensr   r`   r   all_hidden_statesall_self_attnsdecoder_layerlayer_outputss                      r;   rA   Qwen2Model.forwardr  sI    2C1N-TXT_T_TqTq$8$D $++JjJj 	 "+!6IDKK<Q<Q	-t";<YZZ&&4==Yj I /DJ+>??abb  --i8M0*nO!CRC^==?de"\\ ]5H5H5K"KTaThThN )33A6L..>L]
 & #oomJ #7BD0d![[)H4;;+H+HIM#!%55!)
*)."3#-$7
 $
M *!,M  =#3"55' J* 		-0  !11&+/8Od+%	
 	
r=   r$   input_tensorc                    U R                   R                  S:X  a]  UbN  UbK  US S 2S4   R                  5       R                  5       UR	                  5       S   :g  nU(       a  [        S5      eUb  SU;   a  U$ g U R                   R                  S:X  a,  [        U[        R                  5      (       a  [        U5      nU$ Ub  UR                  5       OSn[        U[        5      n[        U[        5      n	U R                   R                  S:X  aQ  U(       dJ  U	(       dC  U(       d<  [        R                  " UUUU R                   R                  U R                   S9(       a  g UR"                  n
[        R$                  " U
5      R&                  nUR(                  S	   nU	(       d  U(       a  UR+                  5       nO5[        U[        R                  5      (       a  UR(                  S   OX|-   S	-   nU R-                  UUUU
UUR(                  S   U R                   US
9nU R                   R                  S:X  a:  Ub7  UR.                  R0                  S;   a  U(       d  [        R2                  " X5      nU$ )Nr   rK   r   zYou are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing the input. r   flex_attentionr   )r2  past_key_values_lengthr   is_trainingr"   )sequence_lengthtarget_lengthrt   r   
batch_sizer/   r   )cudaxpunpu)r/   r   sumitemsizer9  r   rP   r   r%   r:  r   r   r   _ignore_causal_mask_sdpar   rv   rt   finfominrO   get_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positionr
  r   _unmask_unattended)r9   ro   rC  r   r   r   is_padding_rightr=  using_static_cacheusing_sliding_window_cachert   	min_dtyperH  rI  r   s                  r;   r<  Qwen2Model._update_causal_mask  s;    ;;++/BB)o.I#1!R%#8#<#<#>#C#C#EIZIZI\]^I_#_ #$a 
 )c^.C%%;;++/??.%,,77!<^!L!!
 @O?Z?99;`a'E%/AS%T" KK,,6'+E%%>>*'7#{{99 MM ""KK&**	&,,Q/%);+??AM
 nell;; $$R(%7!;  PP+')#))!,;;+ Q 	
 KK,,6*%%**.DD%
 1CCK[Kr=   rH  rI  rt   rJ  c                    U b  U R                  5       S:X  a  U nU$ [        R                  " U5      R                  n	[        R                  " X4XUR
                  S9n[        R                  " X$R
                  S9UR                  SS5      :  n
UR                  5       n[        USS5      (       av  UR                  bi  [        U[        5      (       a  X:  aO  [        R                  " X$R
                  S9UR                  SS5      UR                  -
  :*  nU
R                  U5        X-  nUSSSS2SS24   R                  USSS5      nU b  UR                  5       nU R                   S   U:  a  U SS2SU24   n U R                   S   nUSS2SS2SS2SU24   U SS2SSSS24   R#                  UR
                  5      -   nUS	:H  nUSS2SS2SS2SU24   R%                  X5      USS2SS2SS2SU24'   U$ )
aQ  
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

Args:
    attention_mask (`torch.Tensor`):
        A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
    sequence_length (`int`):
        The sequence length being processed.
    target_length (`int`):
        The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
    dtype (`torch.dtype`):
        The dtype to use for the 4D attention mask.
    cache_position (`torch.Tensor`):
        Indices depicting the position of the input sequence tokens in the sequence.
    batch_size (`torch.Tensor`):
        Batch size.
    config (`Qwen2Config`):
        The model's configuration class
    past_key_values (`Cache`):
        The cache class that is being used currently to generate
N   )
fill_valuert   r
  r6  rK   r"   r   Tr   )rN   rP   rR  rS  fullr
  r;  re   get_text_configr   r   r   r   bitwise_or_rd   clonerO   r}   masked_fill)ro   rH  rI  rt   r   rJ  r/   r   r   rZ  diagonal_attend_masktext_configsliding_attend_maskmask_lengthpadding_masks                  r;   rU  @Qwen2Model._prepare_4d_causal_attention_mask_with_cache_position(  s   B %.*<*<*>!*C(K@ = E*..I** 0Y\j\q\qK $)<<F[F[#\_m_u_uA` $  !002K{$8$??KD^D^Dj "/3EFF/Ji*/,,}MbMb*c&..r158R8RR+' )445HI/K%dD!Q&67>>z1bRTUK))//1!''+m;%3A~~4E%FN,2226*1aL[L+@ANSTVZ\`bcScDdDgDg&&E    ,q05@Aq,;,AV5W5c5c 6Aq!\k\12 r=   )r  r&  r#  r$  r   r%  r  	NNNNNNNNN)F)rC   rD   rE   rF   r#   r.   r+  r/  r   r   r   rP   r   r   r
   r   r   r   r   r   rA   r   r<  staticmethodr   rt   rU  rG   rH   rI   s   @r;   r  r  Z  s   {  !"  151537+/59$(,0/359\
E,,-\
 !.\
 u//0	\

 "%\
   1 12\
 D>\
 $D>\
 'tn\
 !!1!12\
 $$89\
 
!\
  \
H #(TellK78T llT 	T
 T  Tl BBB B {{	B
 B B B B Br=   r  c                       \ rS rSrSrg)KwargsForCausalLMin  r   N)rC   rD   rE   rF   rG   r   r=   r;   rm  rm  n  s    3r=   rm  c                     ^  \ rS rSrS/rSS0rSS/S/40rU 4S jrS rS	 r	S
 r
S rS rS r\\           SS\\R$                     S\\R&                     S\\R$                     S\\   S\\R*                     S\\R$                     S\\   S\\   S\\   S\\R$                     S\\\R&                  4   S\\   S\4S jj5       5       rSrU =r$ )Qwen2ForCausalLMiq  zlm_head.weightlm_headcolwise_repr`   logitsc                    > [         TU ]  U5        [        U5      U l        UR                  U l        [
        R                  " UR                  UR                  SS9U l        U R                  5         g r*   )
r-   r.   r  r   r  r   r2   r0   rp  r'  r8   s     r;   r.   Qwen2ForCausalLM.__init__w  sU     '
 ++yy!3!3V5F5FUS 	r=   c                 .    U R                   R                  $ r?   r   r  r   s    r;   r+  %Qwen2ForCausalLM.get_input_embeddings      zz&&&r=   c                 $    XR                   l        g r?   rv  r.  s     r;   r/  %Qwen2ForCausalLM.set_input_embeddings      "'

r=   c                     U R                   $ r?   rp  r   s    r;   get_output_embeddings&Qwen2ForCausalLM.get_output_embeddings  s    ||r=   c                     Xl         g r?   r}  )r9   new_embeddingss     r;   set_output_embeddings&Qwen2ForCausalLM.set_output_embeddings  s    %r=   c                     Xl         g r?   r   )r9   decoders     r;   set_decoderQwen2ForCausalLM.set_decoder  s    
r=   c                     U R                   $ r?   r  r   s    r;   get_decoderQwen2ForCausalLM.get_decoder  s    zzr=   r1  ro   r[   r   r2  labelsr   r   r3  r   logits_to_keepr   rb   c                    Ub  UOU R                   R                  nU	b  U	OU R                   R                  n	U R                  " SUUUUUUUU	U
S.	UD6nUR                  n[        U[        5      (       a  [        U* S5      OUnU R                  USS2USS24   5      nSnUb)  U R                  " SUX`R                   R                  S.UD6n[        UUUR                  UR                  UR                  S9$ )a  
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
    config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
    (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

Example:

```python
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM

>>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```N)	r1  ro   r[   r   r2  r   r   r3  r   )rr  r  r  lossrr  r   r`   r8  r   )r/   r   r3  r   r7  r   r   slicerp  loss_functionr  r   r   r`   r8  )r9   r1  ro   r[   r   r2  r  r   r   r3  r   r  r   r   r`   slice_indicesrr  r  s                     r;   rA   Qwen2ForCausalLM.forward  s   N 2C1N-TXT_T_TqTq$8$D $++JjJj 	
 ,0:: ,
)%+'/!5),
 ,
  118B>SV8W8W~ot4]kmA}a,?@A%%pVF{{OeOepiopD%#33!//))
 	
r=   )rp  r   r  )NNNNNNNNNNr   )rC   rD   rE   rF   _tied_weights_keys_tp_plan_pp_planr.   r+  r/  r~  r  r  r  r   r   r   rP   r   r   r
   r   r   r   r   r   rm  r   rA   rG   rH   rI   s   @r;   ro  ro  q  s   *+=)H_-z:;H'(&  151537+/59-1$(,0/35934G
E,,-G
 !.G
 u//0	G

 "%G
   1 12G
 ))*G
 D>G
 $D>G
 'tnG
 !!1!12G
 c5<</0G
 *+G
 
 G
  G
r=   ro  a  
    The Qwen2 Model transformer with a sequence classification head on top (linear layer).

    [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )custom_introc                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ )Qwen2ForSequenceClassificationi  c                    > [         TU ]  U5        UR                  U l        [        U5      U l        [
        R                  " UR                  U R                  SS9U l        U R                  5         g r*   )
r-   r.   
num_labelsr  r   r   r2   r0   scorer'  r8   s     r;   r.   'Qwen2ForSequenceClassification.__init__  sS      ++'
YYv114??O
 	r=   c                 .    U R                   R                  $ r?   rv  r   s    r;   r+  3Qwen2ForSequenceClassification.get_input_embeddings  rx  r=   c                 $    XR                   l        g r?   rv  r.  s     r;   r/  3Qwen2ForSequenceClassification.set_input_embeddings  r{  r=   r1  ro   r[   r   r2  r  r   r   r3  rb   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nUb  UR                  S   nOUR                  S   nU R                  R
                  c  US:w  a  [        S5      eU R                  R
                  c  SnOUb  XR                  R
                  :g  R                  UR                  [        R                  5      n[        R                  " UR                  S   UR                  [        R                  S9nUU-  R                  S5      nO.Sn[        R                  U R                  R                    S35        U[        R                  " XR                  S	9U4   nSnUb  U R#                  XUU R                  S
9n[%        UUU
R&                  U
R(                  U
R*                  S9$ )e  
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
    config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
    `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
ro   r[   r   r2  r   r   r3  Nr   r"   z=Cannot handle batch sizes > 1 if no padding token is defined.rK   )r
  rt   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r6  )rr  r  pooled_logitsr/   r  )r   r7  r  rO   r/   r  r9  r}   r
  rP   int32r;  argmaxr   r   r:   rC   r  r   r   r`   r8  )r9   r1  ro   r[   r   r2  r  r   r   r3  transformer_outputsr`   rr  rJ  last_non_pad_tokennon_pad_masktoken_indicesr  r  s                      r;   rA   &Qwen2ForSequenceClassification.forward  s   * 8<zz)%+'/!5 8B 	8
 ,==M* "+J&,,Q/J;;##+
a\]];;##+!#"%)A)AAEEfmmUZU`U`aL!LL)<V]]Z_ZeZefM"/,">!F!Fr!J!#>>**+ ,Z Z
 u||J}}MOaab%%VR_hlhshs%tD/ /??-;;*55
 	
r=   )r   r  r  rj  )rC   rD   rE   rF   r.   r+  r/  r   r   r   rP   r   r   r
   r   r   r   rA   rG   rH   rI   s   @r;   r  r    s    '(  151537+/59-1$(,0/3A
E,,-A
 !.A
 u//0	A

 "%A
   1 12A
 ))*A
 D>A
 $D>A
 'tnA
 
*A
  A
r=   r  c                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ )Qwen2ForTokenClassificationiB  c                   > [         TU ]  U5        UR                  U l        [        U5      U l        [        USS 5      b  UR                  nO[        USS 5      b  UR                  nOSn[        R                  " U5      U l
        [        R                  " UR                  UR                  5      U l        U R                  5         g )Nclassifier_dropouthidden_dropoutg?)r-   r.   r  r  r   r   r  r  r   Dropoutrq   r2   r0   r  r'  )r9   r/   r  r:   s      r;   r.   $Qwen2ForTokenClassification.__init__D  s      ++'
6/6B!'!:!:V-t4@!'!6!6!$zz"45YYv1163D3DE
 	r=   c                 .    U R                   R                  $ r?   rv  r   s    r;   r+  0Qwen2ForTokenClassification.get_input_embeddingsT  rx  r=   c                 $    XR                   l        g r?   rv  r.  s     r;   r/  0Qwen2ForTokenClassification.set_input_embeddingsW  r{  r=   r1  ro   r[   r   r2  r  r   r   r3  rb   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nU R                  U5      nSnUb  U R	                  XU R
                  5      n[        UUU
R                  U
R                  S9$ )r  r  N)r  rr  r`   r8  )	r   r7  rq   r  r  r/   r   r`   r8  )r9   r1  ro   r[   r   r2  r  r   r   r3  r   sequence_outputrr  r  s                 r;   rA   #Qwen2ForTokenClassification.forwardZ  s    * ,0::)%+'/!5 ,6 	,
 "33,,7O,%%fdkkBD$!//))	
 	
r=   )rq   r   r  r  rj  )rC   rD   rE   rF   r.   r+  r/  r   r   r   rP   r   r   r
   r   r   r   rA   rG   rH   rI   s   @r;   r  r  B  s     '(  151537+/59-1$(,0/3*
E,,-*
 !.*
 u//0	*

 "%*
   1 12*
 ))**
 D>*
 $D>*
 'tn*
 
*
  *
r=   r  c                   B  ^  \ rS rSrSrU 4S jrS rS r\\	         SS\
\R                     S\
\R                     S\
\R                     S	\
\   S
\
\R                     S\
\R                     S\
\R                     S\
\   S\
\   S\4S jj5       5       rSrU =r$ )Qwen2ForQuestionAnsweringi  transformerc                    > [         TU ]  U5        [        U5      U l        [        R
                  " UR                  S5      U l        U R                  5         g )NrL   )	r-   r.   r  r  r   r2   r0   
qa_outputsr'  r8   s     r;   r.   "Qwen2ForQuestionAnswering.__init__  sA     %f-))F$6$6: 	r=   c                 .    U R                   R                  $ r?   r  r  r   s    r;   r+  .Qwen2ForQuestionAnswering.get_input_embeddings  s    ,,,r=   c                 $    XR                   l        g r?   r  r.  s     r;   r/  .Qwen2ForQuestionAnswering.set_input_embeddings  s    (-%r=   r1  ro   r[   r   r2  start_positionsend_positionsr   r3  rb   c
           
         U R                  UUUUUUU	S9nUR                  nU R                  U5      nUR                  SSS9u  pUR	                  S5      R                  5       nUR	                  S5      R                  5       nS nUb  Ub  U R                  " XXg40 U
D6n[        UUUUR                  UR                  S9$ )N)ro   r[   r   r2  r   r3  r"   rK   rM   )r  start_logits
end_logitsr`   r8  )
r  r7  r  splitsqueezer~   r  r   r`   r8  )r9   r1  ro   r[   r   r2  r  r  r   r3  r   r   r  rr  r  r  r  s                    r;   rA   !Qwen2ForQuestionAnswering.forward  s     ,0+;+;)%+'/!5 ,< ,
 "331#)<<r<#: #++B/::<''+668
&=+D%%libhiD+%!!//))
 	
r=   )r  r  rj  )rC   rD   rE   rF   r   r.   r+  r/  r   r   r   rP   r   r   r
   r   r   r   rA   rG   rH   rI   s   @r;   r  r    s    %-.  151537+/596:48,0/3(
E,,-(
 !.(
 u//0	(

 "%(
   1 12(
 "%"2"23(
   0 01(
 $D>(
 'tn(
 
&(
  (
r=   r  )r   r  ro  r  r  r  )Nr"   )r   )Jtypingr   r   r   r   rP   r   activationsr	   cache_utilsr
   r   r   r   
generationr   integrationsr   modeling_attn_mask_utilsr   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr   r   r   r   r   modeling_rope_utilsr   r   modeling_utilsr   r   processing_utilsr   utilsr   r   r   r    r!   configuration_qwen2r#   !torch.nn.attention.flex_attentionr$   integrations.flex_attentionr%   
get_loggerrC   r   Moduler'   rT   r_   r   r   rj   r  r   r   r   r   r   r   r  rm  ro  r  r  r  __all__r   r=   r;   <module>r     sC   4 3   ! O O ) 7 > B 9  L F & h h ,  !!;J 
		H	%ryy  (6	UU\\ 	U# 	U%,, 	U& %II%<<% 
% <<	%
 U\\*% % %4I)RYY I)X Y'J299 J (J(52 5p *? * *8<299 <D P% P Pf ?,j > i
+_ i
 i
X S
%9 S
S
l C
"6 C
 C
L ;
 4 ;
 ;
|r=   