
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zPixtral model configuration   )PretrainedConfig)loggingc                   J   ^  \ rS rSrSrSr           SU 4S jjrSrU =r$ )PixtralVisionConfig   a  
This is the configuration class to store the configuration of a [`PixtralVisionModel`]. It is used to instantiate an
Pixtral vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to the vision encoder used by Pixtral-12B.

e.g. [pixtral-hf/pixtral-9b](https://huggingface.co/pixtral-hf/pixtral-9b)

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    hidden_size (`int`, *optional*, defaults to 1024):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 4096):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 24):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads in the Transformer encoder.
    num_channels (`int`, *optional*, defaults to 3):
        Number of input channels in the input images.
    image_size (`int`, *optional*, defaults to 1024):
        Max dimension of the input images.
    patch_size (`int`, *optional*, defaults to 16):
        Size of the image patches.
    hidden_act (`str`, *optional*, defaults to `"gelu"`):
        Activation function used in the hidden layers.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        Dropout probability for the attention layers.
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

Example:

```python
>>> from transformers import PixtralVisionModel, PixtralVisionConfig

>>> # Initializing a Pixtral-12B style configuration
>>> config = PixtralVisionConfig()

>>> # Initializing a model (with randomly initialized weights) from the configuration
>>> model = PixtralVisionModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```pixtralc                    > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        Xpl        X`l        Xl	        Xl
        Xl        X-  U l        Xl        g )N )super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_channels
patch_size
image_sizeattention_dropout
hidden_act
rope_thetahead_diminitializer_range)selfr   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/pixtral/configuration_pixtral.pyr   PixtralVisionConfig.__init__K   s]     	"6"&!2!2#6 ($$!2$$#:!2    )r   r   r   r   r   r   r   r   r   r   r   r   )   i         r   r   r!   gelug        g     @g{Gz?)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r   s   @r   r   r      s=    /b J 3 3r   r   N)
r'   configuration_utilsr   utilsr   
get_loggerr#   loggerr   __all__r
   r   r   <module>r0      s<    " 3  
		H	%P3* P3f !
!r   