
    fTh=                         S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      r " S S\5      r	 " S S	\5      r
/ S
Qrg)zPix2Struct model configuration   )PretrainedConfig)loggingc                   r   ^  \ rS rSrSrSrS/rSSSSSSSS.r                  SU 4S	 jjrS
r	U =r
$ )Pix2StructTextConfig   a  
This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate
a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by
the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 50244):
        Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be
        represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    d_kv (`int`, *optional*, defaults to 64):
        Dimensionality of the key, query, value projections in each attention head.
    d_ff (`int`, *optional*, defaults to 2048):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    num_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    relative_attention_num_buckets (`int`, *optional*, defaults to 32):
        The number of buckets to use for each attention layer.
    relative_attention_max_distance (`int`, *optional*, defaults to 128):
        The maximum distance of the longer sequences for the bucket separation.
    dropout_rate (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
        The epsilon used by the layer normalization layers.
    initializer_factor (`float`, *optional*, defaults to 1.0):
        A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
        testing).
    dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`):
        The non-linear activation function (function or string).
    decoder_start_token_id (`int`, *optional*, defaults to 0):
        The id of the `decoder_start_token_id` token.
    use_cache (`bool`, *optional*, defaults to `False`):
        Whether or not the model should return the last key/values attentions (not used by all models).
    pad_token_id (`int`, *optional*, defaults to 0):
        The id of the `padding` token.
    eos_token_id (`int`, *optional*, defaults to 1):
        The id of the `end-of-sequence` token.

Example:

```python
>>> from transformers import Pix2StructTextConfig, Pix2StructTextModel

>>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructTextConfig()

>>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructTextModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```pix2struct_text_modelpast_key_valueshidden_size	num_heads
num_layers)r
   num_attention_headsnum_hidden_layersdecoder_attention_headsencoder_attention_headsencoder_layersdecoder_layersc           	         > Xl         X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl        Xl	        Xl
        Xl        UU l        Xl        Xl        [        TU ]@  " SUUUUUS.UD6  g )N)pad_token_ideos_token_iddecoder_start_token_idtie_word_embeddings
is_decoder )
vocab_sizer
   d_kvd_ffr   r   relative_attention_num_bucketsrelative_attention_max_distancedropout_ratelayer_norm_epsiloninitializer_factor	use_cacher   r   dense_act_fnsuper__init__)selfr   r
   r   r   r   r   r   r   r   r    r!   r#   r   r"   r   r   r   r   kwargs	__class__s                       o/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/pix2struct/configuration_pix2struct.pyr%   Pix2StructTextConfig.__init__a   s    , %&		$".L+/N,("4"4"(&<# ) 	
%%#9 3!	
 	
    )r   r   r   r#   r   r   r
   r!   r    r   r   r   r   r"   r   )iD     @         r/          g?ư>      ?gelu_new    Fr5      FT)__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr%   __static_attributes____classcell__r(   s   @r)   r   r      sw    :x )J#4"5$*)#.#.&&M ')(+ !'0
 0
r+   r   c                   R   ^  \ rS rSrSrSr               SU 4S jjrSrU =r$ )Pix2StructVisionConfig   a  
This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to
instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture.
Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    patch_embed_hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the input patch_embedding layer in the Transformer encoder.
    d_ff (`int`, *optional*, defaults to 2048):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    d_kv (`int`, *optional*, defaults to 64):
        Dimensionality of the key, query, value projections per attention head.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
    layer_norm_eps (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the layer normalization layers.
    dropout_rate (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 1e-10):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    initializer_factor (`float`, *optional*, defaults to 1.0):
        A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
        testing).
    seq_len (`int`, *optional*, defaults to 4096):
        Maximum sequence length (here number of patches) supported by the model.
    relative_attention_num_buckets (`int`, *optional*, defaults to 32):
        The number of buckets to use for each attention layer.
    relative_attention_max_distance (`int`, *optional*, defaults to 128):
        The maximum distance (in tokens) to use for each attention layer.

Example:

```python
>>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel

>>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructVisionConfig()

>>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructVisionModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```pix2struct_vision_modelc                    > [         TU ]  " S0 UD6  Xl        X l        X0l        Xl        XPl        X`l        Xl        Xl	        Xl
        Xl        Xpl        Xl        Xl        Xl        X@l        g )Nr   )r$   r%   r
   patch_embed_hidden_sizer   r   r   r   initializer_ranger!   attention_dropoutlayer_norm_epsr#   seq_lenr   r   r   )r&   r
   rG   r   r   r   r   r#   rJ   r   rI   rH   r!   rK   r   r   r'   r(   s                    r)   r%   Pix2StructVisionConfig.__init__   sl    & 	"6"&'>$	(!2#6 !2"4!2,(.L+/N,	r+   )rI   r   r   r#   r   r
   r!   rH   rJ   r   r   rG   r   r   rK   )r,   r,   r.   r-   r/   r/   r4   r2           rM   g|=r3   i   r0   r1   )	r7   r8   r9   r:   r;   r<   r%   r?   r@   rA   s   @r)   rC   rC      sI    8t +J  #')(+!# #r+   rC   c                   ^   ^  \ rS rSrSrSr       S	U 4S jjr\S\S\	4S j5       r
SrU =r$ )
Pix2StructConfig   a  
[`Pix2StructConfig`] is the configuration class to store the configuration of a
[`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified
arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will
yield a similar configuration to that of the Pix2Struct-base
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    text_config (`dict`, *optional*):
        Dictionary of configuration options used to initialize [`Pix2StructTextConfig`].
    vision_config (`dict`, *optional*):
        Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`].
    initializer_factor (`float`, *optional*, defaults to 1.0):
        Factor to multiply the initialization range with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    is_vqa (`bool`, *optional*, defaults to `False`):
        Whether the model has been fine-tuned for VQA or not.
    kwargs (*optional*):
        Dictionary of keyword arguments.

Example:

```python
>>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration

>>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructConfig()

>>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructForConditionalGeneration(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

>>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig

>>> # Initializing a Pix2Struct text and Pix2Struct vision configuration
>>> config_text = Pix2StructTextConfig()
>>> config_vision = Pix2StructVisionConfig()

>>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision)
```
pix2structc                   > [         T	U ]  " SXgS.UD6  Uc  0 n[        R                  S5        Uc  0 n[        R                  S5        XqS'   XaS'   [	        S0 UD6U l        [        S0 UD6U l        U R
                  R                  U l        U R
                  R                  U l	        U R
                  R                  U l
        X0l        X@l        U R                  U R
                  l        U R                  U R                  l        XPl        g )N)r   is_encoder_decoderzOtext_config is None. Initializing the Pix2StructTextConfig with default values.zSvision_config is None. Initializing the Pix2StructVisionConfig with default values.rS   r   r   )r$   r%   loggerinfor   text_configrC   vision_configr   r   r   r!   rH   is_vqa)
r&   rV   rW   r!   rH   rX   r   rS   r'   r(   s
            r)   r%   Pix2StructConfig.__init__)  s     	r-@rkqrKKKij MKKmn,>()-@)*/>+>3DmD&*&6&6&M&M# ,,99 ,,99"4!2-1-C-C*/3/E/E,r+   rV   rW   c                 P    U " SUR                  5       UR                  5       S.UD6$ )z
Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
vision model configuration.

Returns:
    [`Pix2StructConfig`]: An instance of a configuration object
)rV   rW   r   )to_dict)clsrV   rW   r'   s       r)   from_text_vision_configs)Pix2StructConfig.from_text_vision_configsO  s,     f{224MDYDYD[f_effr+   )r   r   r!   rH   rX   r   rV   rW   )NNr3   g{Gz?FFT)r7   r8   r9   r:   r;   r<   r%   classmethodr   rC   r]   r?   r@   rA   s   @r)   rO   rO      sU    -^ J !$L g.g?Ug gr+   rO   )rO   r   rC   N)r;   configuration_utilsr   utilsr   
get_loggerr7   rT   r   rC   rO   __all__r   r+   r)   <module>rd      s\    % 3  
		H	%y
+ y
x`- `Fdg' dgN Qr+   