
    fTh (                     l    S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zPyTorch Phi-MoE model.   )PretrainedConfig)rope_config_validation)loggingc                   p   ^  \ rS rSrSrSrS/r                           SU 4S jjrSrU =r	$ )PhimoeConfig   a  
This is the configuration class to store the configuration of a [`PhimoeModel`]. It is used to instantiate a Phi-moe
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
    vocab_size (`int`, *optional*, defaults to 32064):
        Vocabulary size of the Phimoe model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`PhimoeModel`]
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 6400):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_key_value_heads (`int`, *optional*, defaults to 8):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
        The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
        allows sequence of up to 4096*32 tokens.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*):
        The id of the padding token.
    bos_token_id (`int`, *optional*, defaults to 1):
        The id of the "beginning-of-sequence" token.
    eos_token_id (`int`, *optional*, defaults to 2):
        The id of the "end-of-sequence" token.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether the model's input and output word embeddings should be tied.
    rope_theta (`float`, *optional*, defaults to 1000000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`dict`, *optional*):
        The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
        contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
        `original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
        be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
        the attention head size and the `original_max_position_embeddings` must be an integer.
    sliding_window (`int`, *optional*):
        Sliding window attention window size. If not specified, will default to `262144`.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    num_experts_per_tok (`int`, *optional*, defaults to 2):
        The number of experts to root per-token, can be also interpreted as the `top-p` routing
        parameter
    num_local_experts (`int`, *optional*, defaults to 16):
        Number of experts per Sparse MLP layer.
    output_router_logits (`bool`, *optional*, defaults to `False`):
        Whether or not the router logits should be returned by the model. Enabling this will also
        allow the model to output the auxiliary loss. See [here]() for more details
    router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
        The aux loss factor for the total loss.
    router_jitter_noise (`float`, *optional*, defaults to 0.01):
        Amount of noise to add to the router.
    input_jitter_noise (`float`, *optional*, defaults to 0.0): Input jitter noise
    attention_bias (`bool`, *optional*, defaults to `False`): Attention bias
    lm_head_bias (`bool`, *optional*, defaults to `False`): LM head bias

Example:

```python
>>> from transformers import PhimoeModel, PhimoeConfig
>>> # Initializing a Phi-3 style configuration
>>> configuration = PhimoeConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
>>> # Initializing a model from the configuration
>>> model = PhimoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```phimoepast_key_valuesc                   > Xl         Xl        X l        X0l        X@l        XPl        UU l        UU l        UU l        Uc  UnX`l	        Xpl
        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        [/        U R,                  [0        5      (       a  SU R,                  ;  a)  U R,                  R3                  SS 5      U R,                  S'   SU R,                  ;   a  U R,                  S   U l        U R,                  R3                  SS 5      nU R,                  R3                  SS 5      n[/        U[6        [8        45      (       d  [;        SU 35      e[/        U[6        [8        45      (       d  [;        SU 35      e[=        U 5        [>        TU ]  " S	UUUUS.UD6  g )
N	rope_typetype original_max_position_embeddingsshort_mscalelong_mscalez:`rope_scaling`'s short_mscale field must be a number, got z9`rope_scaling`'s long_mscale field must be a number, got )pad_token_idbos_token_ideos_token_idtie_word_embeddings )!
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headssliding_windowattention_biaslm_head_biasnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_dropoutnum_experts_per_toknum_local_expertsoutput_router_logitsrouter_aux_loss_coefrouter_jitter_noiseinput_jitter_noiserope_scaling
isinstancedictgetr   intfloat
ValueErrorr   super__init__) selfr   r   r   r   r   r   r    r   r!   r"   r#   r   r   r   r   r$   r,   r   r%   r&   r'   r(   r)   r*   r+   r   r   kwargsrope_scaling_short_mscalerope_scaling_long_mscale	__class__s                                   g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/phimoe/configuration_phimoe.pyr4   PhimoeConfig.__init__t   s   > %'>$&!2!2#6 ,,(&"5#6 $!2("$!2#6 !2$8!$8!#6 "4(d''..$"3"33151B1B1F1Fvt1T!!+.1T5F5FF8<8I8IJl8m5(,(9(9(=(=nd(S%'+'8'8'<'<]D'Q$7#uFF PQjPkl  6eEE OPhOij  	t$ 	
%%% 3		

 	
    )r   r%   r    r   r!   r+   r   r   r   r   r&   r   r   r'   r   r(   r"   r,   r$   r)   r*   r   r#   r   )i@}  i   i       r=      silui   g{Gz?gh㈵>TN      Fg    .ANN        rA      FgMbP?g{Gz?rB   FF)
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer4   __static_attributes____classcell__)r9   s   @r:   r   r      sy    Tl J#4"5  )!"" 9T
 T
r<   r   N)rH   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerrD   loggerr   __all__r   r<   r:   <module>rS      s?      3 9  
		H	%n
# n
b 
r<   