
    fTh                        S SK JrJrJrJr  S SKrS SKJr  SSKJr  SSK	J
r
JrJrJr  SSKJr  SSKJr  SS	KJr  SS
KJr  SSKJr  SSKJrJrJrJr  SSKJrJr  SSK J!r!J"r"  SSK#J$r$  SSK%J&r&J'r'J(r(J)r)J*r*  SSK+J,r,  \)" 5       (       a  S SK-J.r.  SSK/J0r0  \*Rb                  " \25      r3 " S S\Rh                  5      r5S r6S\Rn                  S\8S\Rn                  4S jr9 S=S\Rh                  S\Rn                  S\Rn                  S\Rn                  S \\Rn                     S!\:S"\:4S# jjr;S>S$ jr< " S% S&\Rh                  5      r=\" S'5       " S( S)\Rh                  5      5       r> " S* S+\5      r?\' " S, S-\"5      5       r@ " S. S/\Rh                  5      rA\' " S0 S1\@5      5       rB " S2 S3\\&5      rC\' " S4 S5\@\5      5       rD\'" S6S79 " S8 S9\@5      5       rE\' " S: S;\@5      5       rF/ S<QrGg)?    )CallableOptionalTupleUnionN)nn   )ACT2FN)CacheDynamicCacheSlidingWindowCacheStaticCache)GenerationMixin)use_kernel_forward_from_hub)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPast SequenceClassifierOutputWithPastTokenClassifierOutput)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)
LossKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )
Phi3Config)	BlockMask)make_flex_block_causal_maskc                   b   ^  \ rS rSrU 4S jrS\R                  S\R                  4S jrSrU =r	$ )Phi3MLP9   c                    > [         TU ]  5         Xl        [        R                  " UR
                  SUR                  -  SS9U l        [        R                  " UR                  UR
                  SS9U l        [        UR                     U l        g )N   Fbias)super__init__configr   Linearhidden_sizeintermediate_sizegate_up_proj	down_projr	   
hidden_actactivation_fnselfr.   	__class__s     ^/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/phi3/modeling_phi3.pyr-   Phi3MLP.__init__:   sn    IIf&8&8!f>V>V:V]bc6#;#;V=O=OV[\#F$5$56    hidden_statesreturnc                     U R                  U5      nUR                  SSS9u  p2X R                  U5      -  nU R                  U5      $ )Nr)   dim)r2   chunkr5   r3   )r7   r<   	up_statesgates       r9   forwardPhi3MLP.forwardB   sH    %%m4	#//!/4 2 24 88	~~i((r;   )r5   r.   r3   r2   )
__name__
__module____qualname____firstlineno__r-   torchFloatTensorrE   __static_attributes____classcell__r8   s   @r9   r&   r&   9   s,    7)U%6%6 )5;L;L ) )r;   r&   c                     U SSU R                   S   S-  24   nU SU R                   S   S-  S24   n[        R                  " U* U4SS9$ )z*Rotates half the hidden dims of the input..Nr?   r)   r@   )shaperK   cat)xx1x2s      r9   rotate_halfrV   K   sZ    	
3"!''"+"""	#B	
3q ""	#B99rc2YB''r;   r<   n_repr=   c                     U R                   u  p#pEUS:X  a  U $ U SS2SS2SSS2SS24   R                  X#XU5      n U R                  X#U-  XE5      $ )z
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
r!   N)rQ   expandreshape)r<   rW   batchnum_key_value_headsslenhead_dims         r9   	repeat_kvr_   R   s_    
 2?1D1D.Ez!!Qa"23::5W\dlmM  e(CTTTr;   modulequerykeyvalueattention_maskscalingdropoutc                 @   [        X R                  5      n[        X0R                  5      n	[        R                  " XR	                  SS5      5      U-  n
Ub"  US S 2S S 2S S 2S UR
                  S   24   nX-   n
[        R                  R                  U
S[        R                  S9R                  UR                  5      n
[        R                  R                  XU R                  S9n
[        R                  " X5      nUR	                  SS5      R                  5       nX4$ )Nr)   r   r?   )rA   dtype)ptrainingr!   )r_   num_key_value_groupsrK   matmul	transposerQ   r   
functionalsoftmaxfloat32tori   rf   rk   
contiguous)r`   ra   rb   rc   rd   re   rf   kwargs
key_statesvalue_statesattn_weightscausal_maskattn_outputs                r9   eager_attention_forwardrz   ^   s     3 ; ;<JU$?$?@L<<';';Aq'ABWLL!$Q1.D
0@0@0D.D%DE#1==((2U]](SVVW\WbWbcL==((6??([L,,|:K''1-88:K$$r;   c                 N   UR                  U5      nUR                  U5      nUR                  S   nU SSU24   U SUS24   pUSSU24   USUS24   p[        R                  " Xr-  [	        U5      U-  -   U/SS9n[        R                  " X-  [	        U	5      U-  -   U
/SS9nX4$ )a  Applies Rotary Position Embedding to the query and key tensors.

Args:
    q (`torch.Tensor`): The query tensor.
    k (`torch.Tensor`): The key tensor.
    cos (`torch.Tensor`): The cosine part of the rotary embedding.
    sin (`torch.Tensor`): The sine part of the rotary embedding.
    position_ids (`torch.Tensor`, *optional*):
        Deprecated and unused.
    unsqueeze_dim (`int`, *optional*, defaults to 1):
        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
r?   .Nr@   )	unsqueezerQ   rK   rR   rV   )qkcossinposition_idsunsqueeze_dim
rotary_dimq_rotq_passk_rotk_passq_embedk_embeds                r9   apply_rotary_pos_embr   x   s    ( --
&C
--
&C2Jc;J;&'3
+;)<6c;J;&'3
+;)<6ii%++e*<s*BCVLRTUGii%++e*<s*BCVLRTUGr;   c                   P  ^  \ rS rSrSrSS\S\\   4U 4S jjjr  SS\	R                  S\\	R                  \	R                  4   S\\	R                     S	\\   S
\\	R                     S\\   S\\	R                  \\	R                     \\\	R                        4   4S jjrSrU =r$ )Phi3Attention   z=Multi-headed attention from 'Attention Is All You Need' paperr.   	layer_idxc                 p  > [         TU ]  5         Xl        X l        [	        USUR
                  UR                  -  5      U l        UR                  UR                  -  U l	        UR                  U l        U R                  S-  U l
        UR                  U l        SU l        UR                  U R                  -  SUR                  U R                  -  -  -   n[        R                  " UR                  U R                  -  UR
                  SS9U l        [        R                  " UR
                  USS9U l        g )Nr^   g      Tr)   Fr*   )r,   r-   r.   r   getattrr0   num_attention_headsr^   r\   rl   re   attention_dropout	is_causalr   r/   o_projqkv_proj)r7   r.   r   op_sizer8   s       r9   r-   Phi3Attention.__init__   s    "
F4F4F&JdJd4de$*$>$>&B\B\$\!#)#=#= }}d*!'!9!9,,t}}<qFD^D^aeananDn?ooii : :T]] JFL^L^ejk		&"4"4gEJr;   r<   position_embeddingsrd   past_key_valuecache_positionrt   r=   c           
         UR                   S S n/ UQSPU R                  P7nU R                  U5      n	U R                  R                  U R                  -  n
U	SS U
24   nU	SXU R
                  U R                  -  -   24   nU	SXR
                  U R                  -  -   S 24   nUR                  U5      R                  SS5      nUR                  U5      R                  SS5      nUR                  U5      R                  SS5      nUu  p[        XX5      u  pUb$  XUS.nUR                  XU R                  U5      u  p[        nU R                  R                  S:w  ad  U R                  R                  S:X  a-  UR                  SS	5      (       a  [        R                  S
5        O[         U R                  R                     nU" U UUUU4U R"                  (       d  SOU R$                  U R&                  [)        U R                  SS 5      S.UD6u  nnUR*                  " / UQSP76 R-                  5       nU R/                  U5      nUU4$ )Nr?   .r!   r)   )r   r   r   eagersdpaoutput_attentionsFz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        sliding_window)rf   re   r   )rQ   r^   r   r.   r   r\   viewrn   r   updater   rz   _attn_implementationgetloggerwarning_oncer   rk   r   re   r   rZ   rs   r   )r7   r<   r   rd   r   r   rt   input_shapehidden_shapeqkv	query_posquery_statesru   rv   r   r   cache_kwargsattention_interfacery   rw   s                       r9   rE   Phi3Attention.forward   sI    $))#2.88b8$--8mmM*KK33dmmC	3

?+id6N6NQUQ^Q^6^*^^^_
3	,D,Dt}},T T VVW#((6@@AF__\2<<QB
#((6@@AF&#7RU#[ %#&nUL'5'<'<ZW[WeWegs't$J(?;;++w6{{//69fjjI\^c>d>d##L
 '>dkk>^>^&_#$7
%
  $}}C$2H2HLL"4;;0@$G
%
 
%
!\ "));;;;FFHkk+.L((r;   )
r   r.   r^   r   r   rl   r\   r   r   re   N)NN)rG   rH   rI   rJ   __doc__r"   r   intr-   rK   Tensorr   r
   
LongTensorr   r   rE   rM   rN   rO   s   @r9   r   r      s    GKz Khsm K K( +/596)||6) #5<<#=>6) !.	6)
 !6) !!1!126) -.6) 
u||Xell3XeELL>Q5RR	S6) 6)r;   r   RMSNormc                   8   ^  \ rS rSrSU 4S jjrS rS rSrU =r$ )Phi3RMSNorm   c                    > [         TU ]  5         [        R                  " [        R
                  " U5      5      U l        X l        g)z*
Phi3RMSNorm is equivalent to T5LayerNorm
N)r,   r-   r   	ParameterrK   onesweightvariance_epsilon)r7   r0   epsr8   s      r9   r-   Phi3RMSNorm.__init__   s/     	ll5::k#:; #r;   c                    UR                   nUR                  [        R                  5      nUR	                  S5      R                  SSS9nU[        R                  " X0R                  -   5      -  nU R                  UR                  U5      -  $ )Nr)   r?   T)keepdim)	ri   rr   rK   rq   powmeanrsqrtr   r   )r7   r<   input_dtypevariances       r9   rE   Phi3RMSNorm.forward   sw    #))%((7 $$Q',,R,>%H?T?T4T(UU{{]--k:::r;   c                 ^    [        U R                  R                  5       SU R                   3$ )Nz, eps=)tupler   rQ   r   r7   s    r9   
extra_reprPhi3RMSNorm.extra_repr   s*    ))*+6$2G2G1HIIr;   )r   r   )gư>)	rG   rH   rI   rJ   r-   rE   r   rM   rN   rO   s   @r9   r   r      s    $;J Jr;   r   c                     ^  \ rS rSrS\S\4U 4S jjr       SS\R                  S\	\R                     S\	\R                     S\	\   S	\	\   S
\	\   S\	\R                     S\	\\R                  \R                  4      S\\   S\\R                   \	\\R                   \R                   4      4   4S jjrSrU =r$ )Phi3DecoderLayer   r.   r   c                   > [         TU ]  5         UR                  U l        [        XS9U l        [        U5      U l        [        UR                  UR                  S9U l	        [        UR                  UR                  S9U l
        Xl        [        R                  " UR                  5      U l        [        R                  " UR                  5      U l        g )N)r.   r   r   )r,   r-   r0   r   	self_attnr&   mlpr   rms_norm_epsinput_layernormpost_attention_layernormr.   r   Dropoutresid_pdropresid_attn_dropoutresid_mlp_dropoutr7   r.   r   r8   s      r9   r-   Phi3DecoderLayer.__init__   s    !--&fJ6?*6+=+=6CVCVW(3F4F4FFL_L_(`%"$**V-?-?"@!#F,>,>!?r;   r<   rd   r   r   r   	use_cacher   r   rt   r=   c	                    Un
U R                  U5      nU R                  " SUUUUUUUUS.U	D6u  pXR                  U5      -   nUn
U R                  U5      nU R	                  U5      nXR                  U5      -   nU4nU(       a  X4-  nU$ )a5  
Args:
    hidden_states (`torch.FloatTensor`):
        input to the layer of shape `(batch, seq_len, embed_dim)`
    attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
        `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
    position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
        `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
    past_key_value (`Cache`, *optional*): cached past key and value projection states
    output_attentions (`bool`, *optional*):
        Whether or not to return the attentions tensors of all attention layers. See `attentions` under
        returned tensors for more detail.
    use_cache (`bool`, *optional*):
        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
        (see `past_key_values`).
    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
        Indices depicting the position of the input sequence tokens in the sequence
    kwargs (`dict`, *optional*):
        Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
        into the model
)r<   rd   r   r   r   r   r   r    )r   r   r   r   r   r   )r7   r<   rd   r   r   r   r   r   r   rt   residualself_attn_weightsoutputss                r9   rE   Phi3DecoderLayer.forward  s    D !,,]; ,0>> 
,
')%)/) 3
,
 
,
( !#:#:=#II 55mD/ #9#9-#HH "++Gr;   )r.   r0   r   r   r   r   r   r   )NNNFFNN)rG   rH   rI   rJ   r"   r   r-   rK   r   r   r   r
   boolr   r   r   rL   rE   rM   rN   rO   s   @r9   r   r      s   	@z 	@c 	@ 2637*.,1$)59KO=||= !.= u//0	=
 != $D>= D>= !!1!12= &eELL%,,,F&GH= -.= 
u  (51B1BEDUDU1U+V"WW	X= =r;   r   c                   R    \ rS rSr\rSrSrS/rS/r	Sr
SrSrSrSrSrSrSrS rSrg	)
Phi3PreTrainedModeliD  modelTr   past_key_valuesz0.0.5c                    U R                   R                  n[        U[        R                  5      (       aW  UR
                  R                  R                  SUS9  UR                  b%  UR                  R                  R                  5         g g [        U[        R                  5      (       ad  UR
                  R                  R                  SUS9  UR                  b2  UR
                  R                  UR                     R                  5         g g [        U[        5      (       a&  UR
                  R                  R                  S5        g g )Nr   )r   stdg      ?)r.   initializer_range
isinstancer   r/   r   datanormal_r+   zero_	Embeddingpadding_idxr   fill_)r7   r`   r   s      r9   _init_weights!Phi3PreTrainedModel._init_weightsT  s    kk++fbii((MM&&CS&9{{&  &&( '--MM&&CS&9!!-""6#5#56<<> .,,MM$$S) -r;   r   N)rG   rH   rI   rJ   r"   config_classbase_model_prefixsupports_gradient_checkpointing_no_split_modules_skip_keys_device_placement_supports_flash_attn_2_supports_sdpa_supports_flex_attn_supports_cache_class_supports_quantized_cache_supports_static_cache_supports_attention_backend_versionr   rM   r   r;   r9   r   r   D  sX    L&*#+,#4"5!N  $!"&H*r;   r   c                   l   ^  \ rS rSrSS\4U 4S jjjr\R                  " 5       \S 5       5       r	Sr
U =r$ )Phi3RotaryEmbeddingib  r.   c                   > [         TU ]  5         [        US5      (       aH  UR                  b;  UR                  R	                  SUR                  R	                  S5      5      U l        OSU l        UR                  U l        UR                  U l        Xl	        [        U R
                     U l        U R                  U R                  U5      u  o0l        U R                  SUSS9  U R                  U l        g )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)r,   r-   hasattrr  r   r  max_position_embeddingsmax_seq_len_cachedoriginal_max_seq_lenr.   r   rope_init_fnattention_scalingregister_bufferr  original_inv_freq)r7   r.   devicer  r8   s       r9   r-   Phi3RotaryEmbedding.__init__c  s    6>**v/B/B/N#0044[&BUBUBYBYZ`BabDN&DN"("@"@$*$B$B!/?+/+<+<T[[&+Q((ZeD!%r;   c                 b   U R                   S S S 2S 4   R                  5       R                  UR                  S   SS5      R	                  UR
                  5      nUS S 2S S S 24   R                  5       n[        UR
                  R                  [        5      (       a0  UR
                  R                  S:w  a  UR
                  R                  OSn[        R                  " USS9   UR                  5       UR                  5       -  R                  SS5      n[        R                  " Xf4SS	9nUR                  5       U R                  -  nUR                  5       U R                  -  n	S S S 5        WR	                  UR                   S
9W	R	                  UR                   S
94$ ! , (       d  f       N@= f)Nr   r?   r!   mpscpuF)device_typeenabledr)   r@   )ri   )r  floatrY   rQ   rr   r  r   r  strrK   autocastrn   rR   r   r  r   ri   )
r7   rS   r   inv_freq_expandedposition_ids_expandedr  freqsembr   r   s
             r9   rE   Phi3RotaryEmbedding.forwardt  sR    !MM$4-8>>@GGHZHZ[\H]_acdehhijiqiqr ,QaZ 8 > > @'1!((--'E'E!((--[`J`ahhmmfk^^UC&,,.1F1L1L1NNYYZ[]^_E))UN3C'')d444C'')d444C	 D vvAGGv$cff177f&;;; DCs   $BF  
F.)r  r.   r  r  r  r  r  r   )rG   rH   rI   rJ   r"   r-   rK   no_gradr   rE   rM   rN   rO   s   @r9   r  r  b  s6    /z / /" ]]_<  <r;   r  c                     ^  \ rS rSrS\4U 4S jjrS rS r\\	         SS\
\R                     S\
\R                     S\
\R                     S	\
\   S
\
\R                     S\
\   S\
\   S\
\   S\
\R                     S\\   S\4S jj5       5       r SS\\R                  S4   S\R                  S\R                  S	\S\4
S jjr\S\R                  S\S\S\R2                  S\R                  S\S\S	\4S j5       rSrU =r$ )	Phi3Modeli  r.   c           	        > [         TU ]  U5        UR                  U l        UR                  U l        [
        R                  " UR                  UR                  U R                  5      U l        [
        R                  " [        UR                  5       Vs/ s H  n[        X5      PM     sn5      U l        [        UR                  UR                  S9U l        [#        US9U l        SU l        U R)                  5         g s  snf )Nr   )r.   F)r,   r-   pad_token_idr   
vocab_sizer   r   r0   embed_tokens
ModuleListrangenum_hidden_layersr   layersr   r   normr  
rotary_embgradient_checkpointing	post_initr   s      r9   r-   Phi3Model.__init__  s     !.. ++LL):):F<N<NPTP`P`ammBGH`H`BabBaYf0Bab
   2 28K8KL	-V<&+# 	 cs   C?c                     U R                   $ r   r'  r   s    r9   get_input_embeddingsPhi3Model.get_input_embeddings  s       r;   c                     Xl         g r   r2  r7   rc   s     r9   set_input_embeddingsPhi3Model.set_input_embeddings  s    !r;   	input_idsrd   r   r   inputs_embedsr   r   output_hidden_statesr   flash_attn_kwargsr=   c
                 J   Ub  UOU R                   R                  nUb  UOU R                   R                  nUb  UOU R                   R                  nUS L US L-  (       a  [	        S5      eU R
                  (       a/  U R                  (       a  U(       a  [        R                  S5        Sn[        U[        S 5      [        45      (       d  [	        S5      eUc  U R                  U5      nU(       a  Uc
  [        5       nU	cD  Ub  UR                  5       OSn[        R                   " XUR"                  S   -   UR$                  S9n	Uc  U	R'                  S5      nU R)                  X%XU5      nUnU R+                  X5      nU(       a  SOS nU(       a  SOS nU R,                  S U R                   R.                    H7  nU(       a  X4-  nU" U4UUUUUU	US	.U
D6nUS   nU(       d  M.  UUS   4-  nM9     U R1                  U5      nU(       a  X4-  n[3        UU(       a  UOS UUS
9$ )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.FzBThe `past_key_values` should be either a `Cache` object or `None`.r   r!   r  r   )rd   r   r   r   r   r   r   )last_hidden_stater   r<   
attentions)r.   r   r;  r   
ValueErrorr.  rk   r   r   r   r  r
   r'  r   get_seq_lengthrK   arangerQ   r  r|   _update_causal_maskr-  r+  r*  r,  r   )r7   r9  rd   r   r   r:  r   r   r;  r   r<  past_seen_tokensrx   r<   r   all_hidden_statesall_self_attnsdecoder_layerlayer_outputss                      r9   rE   Phi3Model.forward  sI    2C1N-TXT_T_TqTq$8$D $++JjJj 	 "+!6IDKK<Q<Q	-t";<YZZ&&4==Yj I /DJ+>??abb  --i8M0*nO!CRC^==?de"\\ ]5H5H5K"KTaThThN )33A6L..>L]
 & #oomJ #7BD0d![[)H4;;+H+HIM#!%55!)
*)."3#-$7
 $
M *!,M  =#3"55' J* 		-0  !11&+/8Od+%	
 	
r;   r#   input_tensorc                    U R                   R                  S:X  a]  UbN  UbK  US S 2S4   R                  5       R                  5       UR	                  5       S   :g  nU(       a  [        S5      eUb  SU;   a  U$ g U R                   R                  S:X  a,  [        U[        R                  5      (       a  [        U5      nU$ Ub  UR                  5       OSn[        U[        5      n[        U[        5      n	U R                   R                  S:X  aQ  U(       dJ  U	(       dC  U(       d<  [        R                  " UUUU R                   R                  U R                   S9(       a  g UR"                  n
[        R$                  " U
5      R&                  nUR(                  S	   nU	(       d  U(       a  UR+                  5       nO5[        U[        R                  5      (       a  UR(                  S   OX|-   S	-   nU R-                  UUUU
UUR(                  S   U R                   US
9nU R                   R                  S:X  a:  Ub7  UR.                  R0                  S;   a  U(       d  [        R2                  " X5      nU$ )Nflash_attention_2r?   r   zYou are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing the input. r   flex_attentionr   )r:  past_key_values_lengthr   is_trainingr!   )sequence_lengthtarget_lengthri   r   
batch_sizer.   r   )cudaxpunpu)r.   r   sumitemsizerA  r   rK   r   r$   rB  r   r   r   _ignore_causal_mask_sdpar   rk   ri   finfominrQ   get_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positionr  r  _unmask_unattended)r7   rd   rK  r   r   r   is_padding_rightrE  using_static_cacheusing_sliding_window_cacheri   	min_dtyperQ  rR  rx   s                  r9   rD  Phi3Model._update_causal_mask  s;    ;;++/BB)o.I#1!R%#8#<#<#>#C#C#EIZIZI\]^I_#_ #$a 
 )c^.C%%;;++/??.%,,77!<^!L!!
 @O?Z?99;`a'E%/AS%T" KK,,6'+E%%>>*'7#{{99 MM ""KK&**	&,,Q/%);+??AM
 nell;; $$R(%7!;  PP+')#))!,;;+ Q 	
 KK,,6*%%**.DD%
 1CCK[Kr;   rQ  rR  ri   rS  c                    U b  U R                  5       S:X  a  U nU$ [        R                  " U5      R                  n	[        R                  " X4XUR
                  S9n[        R                  " X$R
                  S9UR                  SS5      :  n
UR                  5       n[        USS5      (       av  UR                  bi  [        U[        5      (       a  X:  aO  [        R                  " X$R
                  S9UR                  SS5      UR                  -
  :*  nU
R                  U5        X-  nUSSSS2SS24   R                  USSS5      nU b  UR                  5       nU R                   S   U:  a  U SS2SU24   n U R                   S   nUSS2SS2SS2SU24   U SS2SSSS24   R#                  UR
                  5      -   nUS	:H  nUSS2SS2SS2SU24   R%                  X5      USS2SS2SS2SU24'   U$ )
aP  
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

Args:
    attention_mask (`torch.Tensor`):
        A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
    sequence_length (`int`):
        The sequence length being processed.
    target_length (`int`):
        The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
    dtype (`torch.dtype`):
        The dtype to use for the 4D attention mask.
    cache_position (`torch.Tensor`):
        Indices depicting the position of the input sequence tokens in the sequence.
    batch_size (`torch.Tensor`):
        Batch size.
    config (`Phi3Config`):
        The model's configuration class
    past_key_values (`Cache`):
        The cache class that is being used currently to generate
N   )
fill_valueri   r  r>  r?   r!   use_sliding_windowTr   )rA   rK   r[  r\  fullr  rC  rZ   get_text_configr   r   r   r   bitwise_or_rY   clonerQ   rr   masked_fill)rd   rQ  rR  ri   r   rS  r.   r   rx   rc  diagonal_attend_masktext_configsliding_attend_maskmask_lengthpadding_masks                  r9   r^  ?Phi3Model._prepare_4d_causal_attention_mask_with_cache_positionR  s   B %.*<*<*>!*C(K@ = E*..I** 0Y\j\q\qK $)<<F[F[#\_m_u_uA` $  !002K{$8$??KD^D^Dj "/3EFF/Ji*/,,}MbMb*c&..r158R8RR+' )445HI/K%dD!Q&67>>z1bRTUK))//1!''+m;%3A~~4E%FN,2226*1aL[L+@ANSTVZ\`bcScDdDgDg&&E    ,q05@Aq,;,AV5W5c5c 6Aq!\k\12 r;   )r'  r.  r+  r,  r   r-  r&  	NNNNNNNNN)F)rG   rH   rI   rJ   r"   r-   r3  r7  r   r   r   rK   r   r   r
   rL   r   r   r   r   rE   r   rD  staticmethodr   ri   r^  rM   rN   rO   s   @r9   r#  r#    s   z  !"  151537+/59$(,0/359\
E,,-\
 !.\
 u//0	\

 "%\
   1 12\
 D>\
 $D>\
 'tn\
 !!1!12\
 $$89\
 
!\
  \
H #(TellK78T llT 	T
 T  Tl BBB B {{	B
 B B B B Br;   r#  c                       \ rS rSrSrg)KwargsForCausalLMi  r   N)rG   rH   rI   rJ   rM   r   r;   r9   rw  rw    s    3r;   rw  c                     ^  \ rS rSrS/rSS0rSS/S/40rU 4S jrS rS	 r	S
 r
S rS rS r\\           SS\\R$                     S\\R&                     S\\R$                     S\\   S\\R*                     S\\R$                     S\\   S\\   S\\   S\\R$                     S\\\R&                  4   S\\   S\4S jj5       5       r       SU 4S jjrSrU =r$ ) Phi3ForCausalLMi  zlm_head.weightlm_headcolwise_repr<   logitsc                    > [         TU ]  U5        [        U5      U l        UR                  U l        [
        R                  " UR                  UR                  SS9U l        U R                  5         g NFr*   )
r,   r-   r#  r   r&  r   r/   r0   rz  r/  r6   s     r9   r-   Phi3ForCausalLM.__init__  sU     v&
 ++yy!3!3V5F5FUS 	r;   c                 .    U R                   R                  $ r   r   r'  r   s    r9   r3  $Phi3ForCausalLM.get_input_embeddings      zz&&&r;   c                 $    XR                   l        g r   r  r6  s     r9   r7  $Phi3ForCausalLM.set_input_embeddings      "'

r;   c                     U R                   $ r   rz  r   s    r9   get_output_embeddings%Phi3ForCausalLM.get_output_embeddings  s    ||r;   c                     Xl         g r   r  )r7   new_embeddingss     r9   set_output_embeddings%Phi3ForCausalLM.set_output_embeddings  s    %r;   c                     Xl         g r   r   )r7   decoders     r9   set_decoderPhi3ForCausalLM.set_decoder  s    
r;   c                     U R                   $ r   r  r   s    r9   get_decoderPhi3ForCausalLM.get_decoder  s    zzr;   r9  rd   r   r   r:  labelsr   r   r;  r   logits_to_keeprt   r=   c                    Ub  UOU R                   R                  nU	b  U	OU R                   R                  n	U R                  " SUUUUUUUU	U
S.	UD6nUR                  n[        U[        5      (       a  [        U* S5      OUnU R                  USS2USS24   5      nSnUb)  U R                  " SUX`R                   R                  S.UD6n[        UUUR                  UR                  UR                  S9$ )a  
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
    config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
    (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

Example:

```python
>>> from transformers import AutoTokenizer, Phi3ForCausalLM

>>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```N)	r9  rd   r   r   r:  r   r   r;  r   )r|  r  r&  lossr|  r   r<   r@  r   )r.   r   r;  r   r?  r   r   slicerz  loss_functionr&  r   r   r<   r@  )r7   r9  rd   r   r   r:  r  r   r   r;  r   r  rt   r   r<   slice_indicesr|  r  s                     r9   rE   Phi3ForCausalLM.forward  s   N 2C1N-TXT_T_TqTq$8$D $++JjJj 	
 ,0:: ,
)%+'/!5),
 ,
  118B>SV8W8W~ot4]kmA}a,?@A%%pVF{{OeOepiopD%#33!//))
 	
r;   c	                   > U(       ae  U R                   R                  (       aJ  UR                  S   U R                   R                  S-   :  a   US   n
XR                   R                  ::  a  S n[        TU ]  " SUUUUUUUUS.U	D6nU$ )Nr!   r   )r9  r   rd   r:  r   r   r   r  r   )r.   r  rQ    original_max_position_embeddingsr,   prepare_inputs_for_generation)r7   r9  r   rd   r:  r   r   r   r  rt   past_lengthmodel_inputsr8   s               r9   r  -Phi3ForCausalLM.prepare_inputs_for_generation  s    $ (("dkk&R&RUV&VV(+KkkJJJ"&w< 

+)')%)

 

 r;   )rz  r   r&  )NNNNNNNNNNr   )NNNNNTN) rG   rH   rI   rJ   _tied_weights_keys_tp_plan_pp_planr-   r3  r7  r  r  r  r  r   r   r   rK   r   r   r
   rL   r   r   r   r   rw  r   rE   r  rM   rN   rO   s   @r9   ry  ry    s   *+=)H_-z:;H'(&  151537+/59-1$(,0/35934G
E,,-G
 !.G
 u//0	G

 "%G
   1 12G
 ))*G
 D>G
 $D>G
 'tnG
 !!1!12G
 c5<</0G
 *+G
 
 G
  G
X % %r;   ry  a  
    The Phi3 Model transformer with a sequence classification head on top (linear layer).

    [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )custom_introc                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ )Phi3ForSequenceClassificationi/  c                    > [         TU ]  U5        UR                  U l        [        U5      U l        [
        R                  " UR                  U R                  SS9U l        U R                  5         g r~  )
r,   r-   
num_labelsr#  r   r   r/   r0   scorer/  r6   s     r9   r-   &Phi3ForSequenceClassification.__init__>  sS      ++v&
YYv114??O
 	r;   c                 .    U R                   R                  $ r   r  r   s    r9   r3  2Phi3ForSequenceClassification.get_input_embeddingsG  r  r;   c                 $    XR                   l        g r   r  r6  s     r9   r7  2Phi3ForSequenceClassification.set_input_embeddingsJ  r  r;   r9  rd   r   r   r:  r  r   r   r;  r=   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nUb  UR                  S   nOUR                  S   nU R                  R
                  c  US:w  a  [        S5      eU R                  R
                  c  SnOUb  XR                  R
                  :g  R                  UR                  [        R                  5      n[        R                  " UR                  S   UR                  [        R                  S9nUU-  R                  S5      nO.Sn[        R                  U R                  R                    S35        U[        R                  " XR                  S	9U4   nSnUb  U R#                  XUU R                  S
9n[%        UUU
R&                  U
R(                  U
R*                  S9$ )e  
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
    config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
    `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
rd   r   r   r:  r   r   r;  Nr   r!   z=Cannot handle batch sizes > 1 if no padding token is defined.r?   )r  ri   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r>  )r|  r  pooled_logitsr.   r  )r   r?  r  rQ   r.   r%  rA  rr   r  rK   int32rC  argmaxr   r   r8   rG   r  r   r   r<   r@  )r7   r9  rd   r   r   r:  r  r   r   r;  transformer_outputsr<   r|  rS  last_non_pad_tokennon_pad_masktoken_indicesr  r  s                      r9   rE   %Phi3ForSequenceClassification.forwardM  s   * 8<zz)%+'/!5 8B 	8
 ,==M* "+J&,,Q/J;;##+
a\]];;##+!#"%)A)AAEEfmmUZU`U`aL!LL)<V]]Z_ZeZefM"/,">!F!Fr!J!#>>**+ ,Z Z
 u||J}}MOaab%%VR_hlhshs%tD/ /??-;;*55
 	
r;   )r   r  r  rt  )rG   rH   rI   rJ   r-   r3  r7  r   r   r   rK   r   r   r
   rL   r   r   rE   rM   rN   rO   s   @r9   r  r  /  s    '(  151537+/59-1$(,0/3A
E,,-A
 !.A
 u//0	A

 "%A
   1 12A
 ))*A
 D>A
 $D>A
 'tnA
 
*A
  A
r;   r  c                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ )Phi3ForTokenClassificationi  c                   > [         TU ]  U5        UR                  U l        [        U5      U l        [        USS 5      b  UR                  nO[        USS 5      b  UR                  nOSn[        R                  " U5      U l
        [        R                  " UR                  UR                  5      U l        U R                  5         g )Nclassifier_dropouthidden_dropoutg?)r,   r-   r  r#  r   r   r  r  r   r   rf   r/   r0   r  r/  )r7   r.   r  r8   s      r9   r-   #Phi3ForTokenClassification.__init__  s      ++v&
6/6B!'!:!:V-t4@!'!6!6!$zz"45YYv1163D3DE
 	r;   c                 .    U R                   R                  $ r   r  r   s    r9   r3  /Phi3ForTokenClassification.get_input_embeddings  r  r;   c                 $    XR                   l        g r   r  r6  s     r9   r7  /Phi3ForTokenClassification.set_input_embeddings  r  r;   r9  rd   r   r   r:  r  r   r   r;  r=   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nU R                  U5      nSnUb  U R	                  XU R
                  5      n[        UUU
R                  U
R                  S9$ )r  r  N)r  r|  r<   r@  )	r   r?  rf   r  r  r.   r   r<   r@  )r7   r9  rd   r   r   r:  r  r   r   r;  r   sequence_outputr|  r  s                 r9   rE   "Phi3ForTokenClassification.forward  s    * ,0::)%+'/!5 ,6 	,
 "33,,7O,%%fdkkBD$!//))	
 	
r;   )rf   r   r  r  rt  )rG   rH   rI   rJ   r-   r3  r7  r   r   r   rK   r   r   r
   rL   r   r   rE   rM   rN   rO   s   @r9   r  r    s     '(  151537+/59-1$(,0/3*
E,,-*
 !.*
 u//0	*

 "%*
   1 12*
 ))**
 D>*
 $D>*
 'tn*
 
*
  *
r;   r  )r   r#  ry  r  r  )r   )Nr!   )Htypingr   r   r   r   rK   r   activationsr	   cache_utilsr
   r   r   r   
generationr   integrationsr   modeling_attn_mask_utilsr   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr   r   r   r   modeling_rope_utilsr   r   modeling_utilsr   r   processing_utilsr   utilsr   r   r   r   r    configuration_phi3r"   !torch.nn.attention.flex_attentionr#   integrations.flex_attentionr$   
get_loggerrG   r   Moduler&   rV   r   r   r_   r  rz   r   r   r   r   r   r  r#  rw  ry  r  r  __all__r   r;   r9   <module>r     s)  . 4 3   ! O O ) 7 > B 9  L F & h h *  !!;J 
		H	%)bii )$(	UU\\ 	U# 	U%,, 	U& %II%<<% 
% <<	%
 U\\*% % %4@H)BII H)V Y'J")) J (J(I1 IX */ * *:<")) <D P# P Pf ?,j > P)? P Pf S
$7 S
S
l C
!4 C
 C
Lr;   