
    fTh+                     l    S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zPhi model configuration   )PretrainedConfig)rope_config_validation)loggingc                      ^  \ rS rSrSrSrS/rSSSSSSS.rS/S	/4S	/S	/4S
S/S
/4S
/S
/4S.r                     SU 4S jjr	Sr
U =r$ )	PhiConfig   a  
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Phi
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 51200):
        Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`PhiModel`].
    hidden_size (`int`, *optional*, defaults to 2048):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 8192):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 24):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    resid_pdrop (`float`, *optional*, defaults to 0.0):
        Dropout probability for mlp outputs.
    embd_pdrop (`int`, *optional*, defaults to 0.0):
        The dropout ratio for the embeddings.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio after computing the attention scores.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 2048):
        The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
        tokens.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    partial_rotary_factor (`float`, *optional*, defaults to 0.5):
        Percentage of the query and keys which will have rotary embedding.
    qk_layernorm (`bool`, *optional*, defaults to `False`):
        Whether or not to normalize the Queries and Keys after projecting the hidden states.
    bos_token_id (`int`, *optional*, defaults to 1):
        Denotes beginning of sequences token id.
    eos_token_id (`int`, *optional*, defaults to 2):
        Denotes end of sequences token id.

Example:

```python
>>> from transformers import PhiModel, PhiConfig

>>> # Initializing a Phi-1 style configuration
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")

>>> # Initializing a model from the configuration
>>> model = PhiModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```phipast_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.densezlayers.*.mlp.fc1zlayers.*.mlp.fc2	input_idsinputs_embedshidden_statesattention_mask)embed_tokensembed_dropoutlayersfinal_layernormc                   > Xl         X l        X0l        X@l        XPl        Uc  UnX`l        Xpl        Xl        Xl        Xl	        Xl
        Xl        Xl        Xl        UU l        UU l        UU l        UU l        U R                  b,  SU R                  ;   a  U R                  S   U R                  S'   [%        U 5        [&        TU ]P  " SUUUS.UD6  g )Ntype	rope_type)bos_token_ideos_token_idtie_word_embeddings )
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_headsresid_pdrop
embd_pdropattention_dropout
hidden_actmax_position_embeddingsinitializer_rangelayer_norm_eps	use_cache
rope_thetarope_scalingpartial_rotary_factorqk_layernormr   super__init__)selfr   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r   r*   r+   r,   r-   r   r   kwargs	__class__s                          a/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/phi/configuration_phi.pyr/   PhiConfig.__init__   s    2 %&!2!2#6 &"5#6 &$!2$'>$!2,"$(%:"( (Vt7H7H-H-1->->v-FDk*t$ 	
%% 3	
 		
    )r$   r#   r%   r   r'   r   r(   r&   r    r   r!   r,   r-   r"   r+   r*   r)   r   )i      i           N        r9   r9   gelu_newr6   g{Gz?gh㈵>TFg     @Ng      ?F      )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr/   __static_attributes____classcell__)r2   s   @r3   r   r      s    n` J#4"5%.%.%.$-%% &(9:*+o->?#%568IJ,-/@A	   $!!-:
 :
r5   r   N)rA   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr=   loggerr   __all__r   r5   r3   <module>rN      s>      3 9  
		H	%|
  |
~ -r5   