
    fTh#                     l    S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zPersimmon model configuration   )PretrainedConfig)rope_config_validation)loggingc                   b   ^  \ rS rSrSrSrS/r                    SU 4S jjrSrU =r	$ )PersimmonConfig   a  
This is the configuration class to store the configuration of a [`PersimmonModel`]. It is used to instantiate an
Persimmon model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[adept/persimmon-8b-base](https://huggingface.co/adept/persimmon-8b-base).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 262144):
        Vocabulary size of the Persimmon model. Defines the number of different tokens that can be represented by
        the `inputs_ids` passed when calling [`PersimmonModel`]
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 16384):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 36):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 64):
        Number of attention heads for each attention layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 16384):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-5):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    tie_word_embeddings(`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 25000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    qk_layernorm (`bool`, *optional*, default to `True`):
        Whether or not to normalize the Queries and Keys after projecting the hidden states
    hidden_dropout (`float`, *optional*, default to 0.0):
        The dropout ratio after applying the MLP to the hidden states.
    attention_dropout (`float`, *optional*, default to 0.0):
        The dropout ratio after computing the attention scores.
    partial_rotary_factor (`float`, *optional*, default to 0.5):
        Percentage of the query and keys which will have rotary embedding.

    Example:

```python
>>> from transformers import PersimmonModel, PersimmonConfig

>>> # Initializing a Persimmon persimmon-7b style configuration
>>> configuration = PersimmonConfig()
```	persimmonpast_key_valuesc                 |  > Xl         Xpl        X l        X0l        X@l        XPl        X`l        Xl        Xl        Xl	        Xl
        Xl        Xl        Xl        UU l        UU l        U R                  b,  SU R                  ;   a  U R                  S   U R                  S'   [!        U 5        ["        TU ]H  " SUUUUS.UD6  g )Ntype	rope_type)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_heads
hidden_actinitializer_rangelayer_norm_eps	use_cache
rope_thetarope_scalingqk_layernormhidden_dropoutattention_dropoutpartial_rotary_factorr   super__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r   r   r   kwargs	__class__s                         m/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/persimmon/configuration_persimmon.pyr$   PersimmonConfig.__init__y   s    0 %'>$&!2!2#6 $!2,"$((,!2%:" (Vt7H7H-H-1->->v-FDk*t$ 	
%%% 3		

 	
    )r!   r   r    r   r   r   r   r   r   r   r"   r   r   r   r   r   )i   i    @  $   @   relu2r+   g{Gz?gh㈵>TFg     j@NT        r/   g      ?N      )
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer$   __static_attributes____classcell__)r'   s   @r(   r   r      sb    Zx J#4"5  %!!+4
 4
r*   r   N)r6   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr2   loggerr   __all__r   r*   r(   <module>rA      s?    $ 3 9  
		H	%T
& T
n 
r*   