
    fTh$                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zOLMo model configuration   )PretrainedConfig)loggingc                      ^  \ rS rSrSrSrS/rSSSSSSSS.rS/S	/4S
S/S
/4S
/S
/4S.r                   SU 4S jjr	S r
SrU =r$ )
OlmoConfig   a  
This is the configuration class to store the configuration of a [`OlmoModel`]. It is used to instantiate an OLMo
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/OLMo-7B-hf](https://huggingface.co/allenai/OLMo-7B-hf).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 50304):
        Vocabulary size of the OLMo model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`OlmoModel`]
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 11008):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 2048):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*, defaults to 1):
        Padding token id.
    bos_token_id (`int`, *optional*):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 50279):
        End of stream token id.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
        these scaling strategies behave:
        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
        experimental feature, subject to breaking API changes in future versions.
    attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    clip_qkv (`float`, *optional*):
        If not `None`, elements of query, key and value attention states are clipped so that their
        absolute value does not exceed this value.

```python
>>> from transformers import OlmoModel, OlmoConfig

>>> # Initializing a OLMo 7B style configuration
>>> configuration = OlmoConfig()

>>> # Initializing a model from the OLMo 7B style configuration
>>> model = OlmoModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```olmopast_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                   > Xl         Xl        X l        X0l        X@l        XPl        Uc  UnX`l        Xpl        Xl        Xl	        Xl
        UU l        U R                  5         UU l        UU l        UU l        [         TU ]D  " SUUUUS.UD6  g )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_range	use_cache
rope_thetarope_scaling_rope_scaling_validationattention_biasattention_dropoutclip_qkvsuper__init__)selfr   r   r   r   r   r   r    r   r!   r"   r   r   r   r   r#   r$   r&   r'   r(   kwargs	__class__s                        c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/olmo/configuration_olmo.pyr*   OlmoConfig.__init__|   s    . %'>$&!2!2#6  &"5#6 $!2"$(%%',!2  	
%%% 3		

 	
    c                    U R                   c  g[        U R                   [        5      (       a  [        U R                   5      S:w  a  [	        SU R                    35      eU R                   R                  SS5      nU R                   R                  SS5      nUb  US;  a  [	        SU 35      eUb  [        U[        5      (       a  US::  a  [	        S	U 35      eg)
z,
Validate the `rope_scaling` configuration.
N   zN`rope_scaling` must be a dictionary with two fields, `type` and `factor`, got typefactor)lineardynamiczF`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got g      ?z7`rope_scaling`'s factor field must be a float > 1, got )r$   
isinstancedictlen
ValueErrorgetfloat)r+   rope_scaling_typerope_scaling_factors      r.   r%   #OlmoConfig._rope_scaling_validation   s     $$++T22c$:K:K6LPQ6Q`aearar`st  !--11&$?"//33HdC$(9AV(VXYjXkl  &j9Le.T.TXkorXrVWjVklmm Ysr0   )r&   r'   r(   r    r   r!   r   r   r   r   r   r$   r#   r"   r   )i  i   i +      r@   Nsilui   g{Gz?T   Nig  Fg     @NFg        N)__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr*   r%   __static_attributes____classcell__)r-   s   @r.   r   r      s    KZ J#4"5%.%.%.%."+ )"+ &(9:#%568IJ!"_$56   $!)3
jn nr0   r   N)
rG   configuration_utilsr   utilsr   
get_loggerrC   loggerr   __all__r   r0   r.   <module>rS      s=   (  3  
		H	%fn! fnR .r0   