
    fTh                     l    S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zNemotron model configuration   )PretrainedConfig)rope_config_validation)loggingc                   d   ^  \ rS rSrSrSrS/r                     SU 4S jjrSrU =r	$ )NemotronConfig   a  
This is the configuration class to store the configuration of a [`NemotronModel`]. It is used to instantiate an Nemotron
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Nemotron-8B.
e.g. [nvidia/nemotron-3-8b-base-4k-hf](https://huggingface.co/nvidia/nemotron-3-8b-base-4k-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 256000):
        Vocabulary size of the Nemotron model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`NemotronModel`]
    hidden_size (`int`, *optional*, defaults to 6144):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 24576):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 48):
        Number of attention heads for each attention layer in the Transformer decoder.
    head_dim (`int`, *optional*):
        Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if None
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 4096):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.0134):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 2):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 3):
        End of stream token id.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding.
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    mlp_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in up_proj and down_proj layers in the MLP layers.

```python
>>> from transformers import NemotronModel, NemotronConfig

>>> # Initializing a Nemotron nemotron-15b style configuration
>>> configuration = NemotronConfig()

>>> # Initializing a model from the nemotron-15b style configuration
>>> model = NemotronModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```nemotronpast_key_valuesc                 ,  > Xl         Xl        X l        X0l        X@l        XPl        Ub  UOX%-  U l        Xpl        Xl        Xl	        Xl
        Xl        UU l        UU l        [        U 5        UU l        UU l        UU l        [$        TU ]L  " SUUUUS.UD6  g )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headshead_dimnum_key_value_heads
hidden_actinitializer_rangenorm_eps	use_cache
rope_thetapartial_rotary_factorr   attention_biasattention_dropoutmlp_biassuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   kwargs	__class__s                          k/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/nemotron/configuration_nemotron.pyr#   NemotronConfig.__init__g   s    2 %'>$&!2!2#6 $,$8k>`#6 $!2 "$%:"t$,!2  	
%%% 3		

 	
    )r   r    r   r   r   r   r   r   r!   r   r   r   r   r   r   r   r   )i  i   i `      0   NNrelu2i   gS!uq?gh㈵>TN   r   Fg     @g      ?Fg        F)
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer#   __static_attributes____classcell__)r&   s   @r'   r   r      se    GR J#4"5   $ !!-2
 2
r)   r   N)r2   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr.   loggerr   __all__r   r)   r'   <module>r=      s?     # 3 9  
		H	%
% 
D 
r)   