
    fTh                      h    S r SSKrSSKJr  SSKJr  \R                  " \5      r " S S\5      r	S/r
g)zMVP model configuration    N   )PretrainedConfig)loggingc                   |   ^  \ rS rSrSrSrS/rSSS.r                            S
U 4S jjrS	r	U =r
$ )	MvpConfig   a  
This is the configuration class to store the configuration of a [`MvpModel`]. It is used to instantiate a MVP model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MVP [RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp)
architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 50267):
        Vocabulary size of the MVP model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`MvpModel`].
    d_model (`int`, *optional*, defaults to 1024):
        Dimensionality of the layers and the pooler layer.
    encoder_layers (`int`, *optional*, defaults to 12):
        Number of encoder layers.
    decoder_layers (`int`, *optional*, defaults to 12):
        Number of decoder layers.
    encoder_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer encoder.
    decoder_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer decoder.
    decoder_ffn_dim (`int`, *optional*, defaults to 4096):
        Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
    encoder_ffn_dim (`int`, *optional*, defaults to 4096):
        Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
    activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    dropout (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    activation_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for activations inside the fully connected layer.
    classifier_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for classifier.
    max_position_embeddings (`int`, *optional*, defaults to 1024):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    init_std (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    encoder_layerdrop (`float`, *optional*, defaults to 0.0):
        The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
        for more details.
    decoder_layerdrop (`float`, *optional*, defaults to 0.0):
        The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
        for more details.
    scale_embedding (`bool`, *optional*, defaults to `False`):
        Scale embeddings by diving by sqrt(d_model).
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models).
    forced_eos_token_id (`int`, *optional*, defaults to 2):
        The id of the token to force as the last generated token when `max_length` is reached. Usually set to
        `eos_token_id`.
    use_prompt (`bool`, *optional*, defaults to `False`):
        Whether or not to use prompt.
    prompt_length (`int`, *optional*, defaults to 100):
        The length of prompt.
    prompt_mid_dim (`int`, *optional*, defaults to 800):
        Dimensionality of the "intermediate" layer in prompt.
Example:

```python
>>> from transformers import MvpConfig, MvpModel

>>> # Initializing a MVP RUCAIBox/mvp style configuration
>>> configuration = MvpConfig()

>>> # Initializing a model (with random weights) from the RUCAIBox/mvp style configuration
>>> model = MvpModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```mvppast_key_valuesencoder_attention_headsd_model)num_attention_headshidden_sizec           
        > Xl         X l        Xl        X@l        X0l        XPl        Xpl        X`l        Xl        Xl	        Xl
        Xl        Xl        UU l        Xl        Xl        UU l        UU l        X0l        UU l        UU l        UU l        UU l        [.        TU ]`  " SUUUUUUS.UD6  U R2                  cN  UR5                  SS5      (       a6  U R6                  U l        [8        R:                  " SU R6                   S35        g g g )N)pad_token_idbos_token_ideos_token_idis_encoder_decoderdecoder_start_token_idforced_eos_token_idforce_bos_token_to_be_generatedFz:Please make sure the config includes `forced_bos_token_id=zT` in future versions. The config can simply be saved and uploaded again to be fixed. )
vocab_sizemax_position_embeddingsr   encoder_ffn_dimencoder_layersr   decoder_ffn_dimdecoder_layersdecoder_attention_headsdropoutattention_dropoutactivation_dropoutactivation_functioninit_stdencoder_layerdropdecoder_layerdropclassifier_dropout	use_cachenum_hidden_layersscale_embedding
use_promptprompt_lengthprompt_mid_dimsuper__init__forced_bos_token_idgetr   warningswarn)selfr   r   r   r   r   r   r   r   r$   r%   r"   r   r   r    r!   r#   r&   r)   r'   r   r   r   r   r   r   r*   r+   r,   kwargs	__class__s                                 a/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/mvp/configuration_mvp.pyr.   MvpConfig.__init__m   s$   @ %'>$.,'>$.,'>$!2"4#6  !2!2"4"!/.$*, 	
%%%1#9 3	
 	
 ##+

;\^c0d0d'+'8'8D$MMLTM^M^L_ `Q Q 1e+    )r!   r"   r    r&   r   r   r   r%   r   r   r   r   r$   r   r/   r#   r   r(   r+   r,   r)   r'   r*   r   )i[              r:   r;   r<           r=   gelur9   g?r=   r=   g{Gz?r=   FT   r      Tr@   r@   Fd   i   )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr.   __static_attributes____classcell__)r5   s   @r6   r   r      s    L\ J#4"5,EV_`M  $ " "" ;G Gr8   r   )rF   r1   configuration_utilsr   utilsr   
get_loggerrB   loggerr   __all__r   r8   r6   <module>rQ      s>      3  
		H	%Z  Zz -r8   