
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zMRA model configuration   )PretrainedConfig)loggingc                   \   ^  \ rS rSrSrSr                    SU 4S jjrSrU =r$ )	MraConfig   a  
This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Mra
[uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 50265):
        Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`MraModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimension of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 1):
        The vocabulary size of the `token_type_ids` passed when calling [`MraModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-5):
        The epsilon used by the layer normalization layers.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
    block_per_row (`int`, *optional*, defaults to 4):
        Used to set the budget for the high resolution scale.
    approx_mode (`str`, *optional*, defaults to `"full"`):
        Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and
        high resolution and `"sparse"` for only low resolution.
    initial_prior_first_n_blocks (`int`, *optional*, defaults to 0):
        The initial number of blocks for which high resolution is used.
    initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0):
        The number of diagonal blocks for which high resolution is used.

Example:

```python
>>> from transformers import MraConfig, MraModel

>>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration
>>> configuration = MraConfig()

>>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration
>>> model = MraModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```mrac                    > [         TU ]  " SUUUS.UD6  Xl        Xl        X l        X0l        X@l        XPl        X`l        Xpl	        Xl
        Xl        Xl        Xl        Xl        Xl        Xl        UU l        UU l        g )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangetype_vocab_sizelayer_norm_epsposition_embedding_typeblock_per_rowapprox_modeinitial_prior_first_n_blocksinitial_prior_diagonal_n_blocks)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r
   r   r   kwargs	__class__s                         a/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/mra/configuration_mra.pyr   MraConfig.__init__\   s    0 	sl\hslrs$'>$&!2#6 !2$#6 ,H)!2.,'>$*&,H)/N,    )r   r   r   r   r   r   r    r   r   r   r   r   r   r   r   r   r   )iY  i      r'   i   gelu皙?r)   i      g{Gz?gh㈵>absolute   full    r.   r*   r.      )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r#   s   @r$   r   r      sZ    ?B J %( # *%&()+*O *Or&   r   N)
r4   configuration_utilsr   utilsr   
get_loggerr0   loggerr   __all__r   r&   r$   <module>r=      s=     3  
		H	%nO  nOb -r&   