
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zMPNet model configuration   )PretrainedConfig)loggingc                   R   ^  \ rS rSrSrSr               SU 4S jjrSrU =r$ )MPNetConfig   ar  
This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to
instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MPNet
[microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 30527):
        Vocabulary size of the MPNet model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`MPNetModel`] or [`TFMPNetModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    relative_attention_num_buckets (`int`, *optional*, defaults to 32):
        The number of buckets to use for each attention layer.

Examples:

```python
>>> from transformers import MPNetModel, MPNetConfig

>>> # Initializing a MPNet mpnet-base style configuration
>>> configuration = MPNetConfig()

>>> # Initializing a model from the mpnet-base style configuration
>>> model = MPNetModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```mpnetc                    > [         TU ]  " SXUS.UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        g )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingsinitializer_rangelayer_norm_epsrelative_attention_num_buckets)selfr   r   r   r   r   r   r   r   r   r   r   r   r
   r   r   kwargs	__class__s                    e/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/mpnet/configuration_mpnet.pyr   MPNetConfig.__init__Q   sd    & 	sl\hslrs$&!2#6 $!2#6 ,H)'>$!2,.L+    )r   r   r   r   r   r   r   r   r   r   r   r   )i?w  i      r"   i   gelu皙?r$   i   g{Gz?g-q=              )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r   s   @r   r   r      sK    3j J %( #')! M  Mr!   r   N)
r-   configuration_utilsr   utilsr   
get_loggerr)   loggerr   __all__r   r!   r   <module>r6      s=       3  
		H	%XM" XMv /r!   