
    fTh>                         S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
 " S S	\5      rS	S/rg
)zMoshi model configuration   )PretrainedConfig)logging   )
AutoConfigc                   ^   ^  \ rS rSrSrSrS/r                  SU 4S jjrSrU =r	$ )MoshiDepthConfig   a6  
This is the configuration class to store the configuration of a [`MoshiDepthDecoder`]. It is used to instantiate a
Moshi depth decoder model according to the specified arguments, defining the Moshi depth decoder config.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 32000):
        Vocabulary size of the MoshiDepthDecoder model. Defines the number of different tokens that can be
        represented by the `inputs_ids` passed when calling [`MoshiDepthDecoder`].
    hidden_size (`int`, *optional*, defaults to 1024):
        Dimensionality of the layers and the pooler layer of the depth decoder.
    input_size (`int`, *optional*, defaults to 4096):
        Dimensionality of the input hidden states. Used to connect the main decoder to the depth decoder.
    num_hidden_layers (`int`, *optional*, defaults to 6):
        Number of depth decoder layers.
    num_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the depth decoder block.
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`.
    audio_vocab_size (`int`, *optional*, defaults to 2048):
        Vocabulary size of the audio part of model. Defines the number of different tokens that can be
        represented by the `audio_codes` passed when calling the Moshi models.
    max_position_embeddings (`int`, *optional*, defaults to 9):
        The maximum sequence length that this model might ever be used with. Typically, set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the depth decoder.
    head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
        The attention head dimension.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    sliding_window (`int`, *optional*, defaults to 8):
        Sliding window attention window size. If not specified, will default to `8`.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    ffn_dim (`int`, *optional*, defaults to 5632):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the depth decoder block. Must be even.
    rms_norm_eps (`float`, *optional*, defaults to 1e-08):
        The epsilon used by the rms normalization layers.
    num_codebooks (`int`, *optional*, defaults to 8):
        The number of audio codebooks for each audio channels.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    kwargs (*optional*):
        Dictionary of keyword arguments. Notably:
            - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
              defines the audio encoder config.

Example:

```python
>>> from transformers import (
...     MoshiDepthConfig,
...     MoshiDepthDecoder,
... )

>>> configuration = MoshiDepthConfig()

>>> # Initializing a MoshiDepthDecoder (with random weights) from the kmhf/hf-moshiko style configuration
>>> model = MoshiDepthDecoder(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```moshi_depthpast_key_valuesc                 N  > Xl         X l        X0l        X@l        XPl        Ub  UOUU l        Xl        Xl        U
=(       d    X%-  U l        Xl	        Xl
        Xl        Xl        US-  S:X  a  [        SU S35      eXl        UU l        UU l        Xpl        [$        TU ]L  " SSU0UD6  g )Nr      	`ffn_dim=` must be even.tie_word_embeddings )
vocab_sizehidden_size
input_sizenum_hidden_layersnum_attention_headsnum_key_value_headsmax_position_embeddings
hidden_acthead_diminitializer_range	use_cachesliding_windowattention_dropout
ValueErrorffn_dimrms_norm_epsnum_codebooksaudio_vocab_sizesuper__init__)selfr   r   r   r   r   r   r#   r   r   r   r   r   r   r   r    r!   r"   r   kwargs	__class__s                       e/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/moshi/configuration_moshi.pyr%   MoshiDepthConfig.__init__h   s    , %&$!2#6 :M:Y#6_r '>$$ FK$F!2",!2Q;!y	ABB(* 0K-@KFK    )r   r#   r    r   r   r   r   r   r   r   r"   r   r   r!   r   r   r   ) }  i            Ni   	   siluN{Gz?T           i   :0yE>r3   F)
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer%   __static_attributes____classcell__r(   s   @r)   r   r      s^    IV J#4"5   !!'*L *Lr+   r   c                      ^  \ rS rSrSrSrS/r\\S.r	                  SU 4S jjr
\S 5       r\S\4S	 j5       rS
rU =r$ )MoshiConfig   a  
This is the configuration class to store the configuration of a [`MoshiModel`]. It is used to instantiate a
Moshi model according to the specified arguments, defining the audio encoder, Moshi depth decoder and Moshi decoder
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moshiko model,
e.g. [kmhf/hf-moshiko](https://huggingface.co/kmhf/hf-moshiko)

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 32000):
        Vocabulary size of the MoshiDecoder model. Defines the number of different tokens that can be
        represented by the `inputs_ids` passed when calling [`MoshiDecoder`].
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimensionality of the layers and the pooler layer of the main decoder.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of decoder layers.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the main decoder block.
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`.
    audio_vocab_size (`int`, *optional*):
        Vocabulary size of the audio part of model. Defines the number of different tokens that can be
        represented by the `audio_codes` passed when calling the Moshi models.
    max_position_embeddings (`int`, *optional*, defaults to 3000):
        The maximum sequence length that this model might ever be used with. Typically, set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
        The attention head dimension.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    sliding_window (`int`, *optional*, defaults to 3000):
        Sliding window attention window size. If not specified, will default to `3000`.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    ffn_dim (`int`, *optional*, defaults to 22528):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the main decoder block. Must be even.
    rms_norm_eps (`float`, *optional*, defaults to 1e-08):
        The epsilon used by the rms normalization layers.
    num_codebooks (`int`, *optional*, defaults to 8):
        The number of audio codebooks for each audio channels.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    kwargs (*optional*):
        Dictionary of keyword arguments. Notably:
            - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
              defines the audio encoder config.
            - **depth__config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
              defines the depth decoder config.


Example:

```python
>>> from transformers import (
...     MoshiConfig,
...     MoshiForConditionalGeneration,
... )

>>> configuration = MoshiConfig()

>>> # Initializing a MoshiForConditionalGeneration (with random weights) from the kmhf/hf-moshiko style configuration
>>> model = MoshiForConditionalGeneration(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

>>> # Saving the model, including its configuration
>>> model.save_pretrained("kmhf/hf-moshiko")

>>> # loading model and config from pretrained folder
>>> moshi_config = MoshiConfig.from_pretrained("kmhf/hf-moshiko")
>>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko", config=moshi_config)
```moshir   )audio_encoder_configdepth_decoder_configc                   > Xl         X l        X0l        X@l        Ub  UOUU l        Xpl        Xl        Xl        U
=(       d    X$-  U l        Xl	        Xl
        Xl        Xl        US-  S:X  a  [        SU S35      eXl        UU l        UU l        UR#                  S0 5      nUR#                  SS5      n[$        R&                  " U40 UD6U l        U R                   U R(                  R                   :  a&  [        SU S	U R(                  R                    S
35      eUc  U R(                  R*                  OUU l        UR#                  S0 5      nUR/                  U R,                  UUUS.5        [1        S0 UD6U l        [4        TU ]l  " SSU0UD6  g )Nr   r   r   r   rD   r;   mimiz`num_codebooks=zX` is greater than the maximum number of codebooks that the audio encoder can deal with (z). Please lower it.rE   )r#   r   r   r"   r   r   )r   r   r   r   r   r   
rope_thetar   r   r   r   r   r   r   r    r!   r"   popr   	for_modelrD   codebook_sizer#   updater   rE   r$   r%   )r&   r   r   r   r   r   r#   r   rH   r   r   r   r   r   r   r    r!   r"   r   r'   rD   audio_encoder_model_typerE   r(   s                          r)   r%   MoshiConfig.__init__   s   , %&!2#6 :M:Y#6_r '>$$$ FK$F!2",!2Q;!y	ABB(*%zz*@"E#7#;#;L&#Q $.$8$89Q$jUi$j! 9 9 G GG!-  1I  JN  Jc  Jc  Jq  Jq  Ir  rE  F 
 8H7OD%%33Ue 	  &zz*@"E##$($9$9)(!.		
 %5$L7K$L!K-@KFKr+   c                 .    U R                   R                  $ )N)rD   sampling_rate)r&   s    r)   rP   MoshiConfig.sampling_rate6  s    ((666r+   rD   c                 2    U " SSUR                  5       0UD6$ )z
Instantiate a [`MoshiConfig`] (or a derived class) from an audio encoder configuration.

Returns:
    [`MoshiConfig`]: An instance of a configuration object
rD   r   )to_dict)clsrD   r'   s      r)   from_audio_encoder_config%MoshiConfig.from_audio_encoder_config:  s*      
!5!=!=!?

 	
r+   )r   rD   r#   rE   r    r   r   r   r   r   r   r"   r   r   r!   rH   r   r   r   )r,   r-       rW   NN  g     @r1   Nr2   TrX   r4   i X  r5   r3   F)r6   r7   r8   r9   r:   r;   r<   r   r   sub_configsr%   propertyrP   classmethodr   rU   r=   r>   r?   s   @r)   rA   rA      s    Un J#4"5+5O_`K   $!'CLJ 7 7 
.
 
r+   rA   N)r:   configuration_utilsr   utilsr   auto.configuration_autor   
get_loggerr6   loggerr   rA   __all__r   r+   r)   <module>rb      sT      3  0 
		H	%yL' yLxu
" u
p ,
-r+   