
    fTh4                     8    S SK Jr  S SKJr   " S S\5      rS/rg)   )PretrainedConfig)rope_config_validationc                   v   ^  \ rS rSrSrSrS/rSSSS.r                        SU 4S	 jjrS
r	U =r
$ )MoonshineConfig   a!  
This is the configuration class to store the configuration of a [`MoonshineModel`]. It is used to instantiate a Moonshine
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Moonshine
[UsefulSensors/moonshine-tiny](https://huggingface.co/UsefulSensors/moonshine-tiny).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 32768):
        Vocabulary size of the Moonshine model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`MoonshineModel`].
    hidden_size (`int`, *optional*, defaults to 288):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 1152):
        Dimension of the MLP representations.
    encoder_num_hidden_layers (`int`, *optional*, defaults to 6):
        Number of hidden layers in the Transformer encoder.
    decoder_num_hidden_layers (`int`, *optional*, defaults to 6):
        Number of hidden layers in the Transformer decoder.
    encoder_num_attention_heads (`int`, *optional*, defaults to 8):
        Number of attention heads for each attention layer in the Transformer encoder.
    decoder_num_attention_heads (`int`, *optional*, defaults to 8):
        Number of attention heads for each attention layer in the Transformer decoder.
    encoder_num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `encoder_num_key_value_heads=encoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `encoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    decoder_num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `decoder_num_key_value_heads=decoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `decoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `decoder_num_attention_heads`.
    pad_head_dim_to_multiple_of (`int`, *optional*):
        Pad head dimension in encoder and decoder to the next multiple of this value. Necessary for using certain
        optimized attention implementations.
    encoder_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder.
    decoder_hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    decoder_start_token_id (`int`, *optional*, defaults to 1):
        Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
        are provided to the `generate` function. It is used to guide the model`s generation process depending on
        the task.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models).
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    partial_rotary_factor (`float`, *optional*, defaults to 0.9):
        Percentage of the query and keys which will have rotary embedding.
    is_encoder_decoder (`bool`, *optional*, defaults to `True`):
        Whether the model is used as an encoder/decoder or not.
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    bos_token_id (`int`, *optional*, defaults to 1):
        Denotes beginning of sequences token id.
    eos_token_id (`int`, *optional*, defaults to 2):
        Denotes end of sequences token id.

Example:

```python
>>> from transformers import MoonshineModel, MoonshineConfig

>>> # Initializing a Moonshine style configuration
>>> configuration = MoonshineConfig().from_pretrained("UsefulSensors/moonshine-tiny")

>>> # Initializing a model from the configuration
>>> model = MoonshineModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```	moonshinepast_key_valuesencoder_num_key_value_headsencoder_num_attention_headsencoder_num_hidden_layers)num_key_value_headsnum_attention_headsnum_hidden_layersc                 p  > Xl         X l        X0l        X@l        XPl        X`l        Xpl        Uc  UnXl        U	c  Un	Xl        Xl	        Xl
        Xl        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        UU l        UU l        [-        U 5        [.        TU ]`  " SUUUUS.UD6  g )N)bos_token_ideos_token_idis_encoder_decoderdecoder_start_token_id )
vocab_sizehidden_sizeintermediate_sizer   decoder_num_hidden_layersr   decoder_num_attention_headsr
   decoder_num_key_value_headspad_head_dim_to_multiple_ofencoder_hidden_actdecoder_hidden_actmax_position_embeddingsinitializer_ranger   	use_cache
rope_thetarope_scalingpartial_rotary_factorr   attention_biasattention_dropoutr   super__init__)selfr   r   r   r   r   r   r   r
   r   r   r   r   r   r    r   r!   r"   r#   r$   r   r%   r&   r   r   kwargs	__class__s                             m/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/moonshine/configuration_moonshine.pyr(   MoonshineConfig.__init__   s    8 %&!2)B&)B&+F(+F(&.*E'+F(&.*E'+F(+F("4"4'>$!2&<#"$(%:""4,!2 	t$ 	
%%1#9		

 	
    )r%   r&   r   r   r   r   r   r   r   r   r
   r   r    r   r   r   r   r$   r#   r"   r!   r   )i   i   i     r/      r0   NNNgelusilui   g{Gz?   Tg     @Ng?TFg        r3      )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr(   __static_attributes____classcell__)r+   s   @r,   r   r      s    {z J#4"5<<8M "#"#$%$%$($($(!! # !3D
 D
r.   r   N)configuration_utilsr   modeling_rope_utilsr   r   __all__r   r.   r,   <module>rB      s'   * 4 9J
& J
Z 
r.   