
    fThR                          S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
R                  " \5      r " S S	\5      r " S
 S\5      rS	S/rg)zMobileBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   b   ^  \ rS rSrSrSr                       SU 4S jjrSrU =r$ )MobileBertConfig   aw  
This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It
is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT
[google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by
        the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`].
    hidden_size (`int`, *optional*, defaults to 512):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 24):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 4):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 512):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or
        [`TFMobileBertModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.

    pad_token_id (`int`, *optional*, defaults to 0):
        The ID of the token in the word embedding to use as padding.
    embedding_size (`int`, *optional*, defaults to 128):
        The dimension of the word embedding vectors.
    trigram_input (`bool`, *optional*, defaults to `True`):
        Use a convolution of trigram as input.
    use_bottleneck (`bool`, *optional*, defaults to `True`):
        Whether to use bottleneck in BERT.
    intra_bottleneck_size (`int`, *optional*, defaults to 128):
        Size of bottleneck layer output.
    use_bottleneck_attention (`bool`, *optional*, defaults to `False`):
        Whether to use attention inputs from the bottleneck transformation.
    key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`):
        Whether to use the same linear transformation for query&key in the bottleneck.
    num_feedforward_networks (`int`, *optional*, defaults to 4):
        Number of FFNs in a block.
    normalization_type (`str`, *optional*, defaults to `"no_norm"`):
        The normalization type in MobileBERT.
    classifier_dropout (`float`, *optional*):
        The dropout ratio for the classification head.

Examples:

```python
>>> from transformers import MobileBertConfig, MobileBertModel

>>> # Initializing a MobileBERT configuration
>>> configuration = MobileBertConfig()

>>> # Initializing a model (with random weights) from the configuration above
>>> model = MobileBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```

mobilebertc                   > [         TU ]  " SSU0UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        UU l        UU l        U R                   (       a  UU l        OX l        UU l        g )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsembedding_sizetrigram_inputuse_bottleneckintra_bottleneck_sizeuse_bottleneck_attentionkey_query_shared_bottlenecknum_feedforward_networksnormalization_typeclassifier_activationtrue_hidden_sizeclassifier_dropout)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r(   kwargs	__class__s                            o/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/mobilebert/configuration_mobilebert.pyr   MobileBertConfig.__init__l   s    6 	=l=f=$&!2#6 $!2#6 ,H)'>$.!2,,*,%:"(@%+F((@%"4%:"$9D!$/!"4    )r   r&   r(   r   r   r   r   r   r   r!   r#   r   r   r%   r   r$   r   r   r'   r   r    r"   r   )i:w           r/   relug        g?r/      g{Gz?g-q=r      TTr4   FTr1   no_normTN)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r+   s   @r,   r
   r
      sb    KZ J %( #!!&$(!"$"185 85r.   r
   c                   @    \ rS rSr\S\\\\\4   4   4S j5       rSr	g)MobileBertOnnxConfig   returnc                 b    U R                   S:X  a  SSSS.nOSSS.n[        SU4SU4S	U4/5      $ )
Nzmultiple-choicebatchchoicesequence)r      r3   )r   rF   	input_idsattention_masktoken_type_ids)taskr   )r)   dynamic_axiss     r,   inputsMobileBertOnnxConfig.inputs   sO    99))&8
CL&:6Ll+!<0!<0
 	
r.   r   N)
r6   r7   r8   r9   propertyr   strintrL   r<   r   r.   r,   r?   r?      s.    
WS#X%6 67 
 
r.   r?   N)r:   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr6   loggerr
   r?   __all__r   r.   r,   <module>rY      sT    % #  3   
		H	%H5' H5X
: 
  5
6r.   