
    fTh-G                         S r SSKJrJrJr  SSKJr  SSKJr  SSK	J
r
  \
R                  " \5      r " S S\5      r " S	 S
\5      r " S S\5      rS/rg)zMllama model configuration    )DictListOptional   )PretrainedConfig)rope_config_validation)loggingc                       ^  \ rS rSrSrSrSr               SS\S\S\S\S	\S
\S\S\S\S\S\	S\S\
\\      S\
\\\         S\	4U 4S jjjr\S\4S j5       rSrU =r$ )MllamaVisionConfig   a[  
This is the configuration class to store the configuration of a [`MllamaVisionModel`]. It is used to instantiate an
Mllama vision model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-11B.

e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    hidden_size (`int`, *optional*, defaults to 1280):
        Dimensionality of the encoder layers and the pooler layer.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer encoder.
    num_global_layers (`int`, *optional*, defaults to 8):
        Number of global layers in the Transformer encoder.
        Vision model has a second transformer encoder, called global.
    num_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_channels (`int`, *optional*, defaults to 3):
        Number of channels in the input image.
    intermediate_size (`int`, *optional*, defaults to 5120):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    vision_output_dim (`int`, *optional*, defaults to 7680):
        Dimensionality of the vision model output. Includes output of transformer
        encoder with intermediate layers and global transformer encoder.
    image_size (`int`, *optional*, defaults to 448):
        The size (resolution) of each image *tile*.
    patch_size (`int`, *optional*, defaults to 14):
        The size (resolution) of each patch.
    norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the layer normalization layers.
    max_num_tiles (`int`, *optional*, defaults to 4):
        Maximum number of tiles for image splitting.
    intermediate_layers_indices (`List[int]`, *optional*, defaults to [3, 7, 15, 23, 30]):
        Indices of intermediate layers of transformer encoder from which to extract and output features.
        These output features are concatenated with final hidden state of transformer encoder.
    supported_aspect_ratios (`List[List[int]]`, *optional*):
        List of supported aspect ratios for image splitting. If not specified, the default supported aspect ratios
        are [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] for `max_num_tiles=4`.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

Example:

```python
>>> from transformers import MllamaVisionConfig, MllamaVisionModel

>>> # Initializing a Llama config
>>> config = MllamaVisionConfig()

>>> # Initializing a vision model from the mllama-11b style configuration
>>> model = MllamaVisionModel(config)

>>> # Accessing the model configuration
>>> configuration = model.config
```mllama_vision_modelvision_confighidden_size
hidden_actnum_hidden_layersnum_global_layersnum_attention_headsnum_channelsintermediate_sizevision_output_dim
image_size
patch_sizenorm_epsmax_num_tilesintermediate_layers_indicessupported_aspect_ratiosinitializer_rangec           	      D  > Uc+  US:w  a  [        S5      eSS/SS/SS/SS/SS/SS/SS/SS//nUc  / SQnXl        X l        X0l        X`l        Xpl        Xl        Xl        Xl        Xl	        X@l
        Xl        Xl        XPl        Xl        Xl        [         TU ]D  " S0 UD6  g )N   z;max_num_tiles must be 4 for default supported aspect ratios      r   )r                )
ValueErrorr   r   r   r   r   r   r   r   r   r   r   r   attention_headsr   r   super__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                    g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/mllama/configuration_mllama.pyr*   MllamaVisionConfig.__init__\   s    & #*! !^__()1v1v1v1v1vPQSTvXY[\W]`acd_e&f#&.*<'&$!2(!2$!2$+F(!2* 2'>$!2"6"    returnc                 ,    [        U R                  5      $ )N)lenr   )r+   s    r.   max_aspect_ratio_id&MllamaVisionConfig.max_aspect_ratio_id   s    4//00r0   )r(   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )i   gelu          r   i   i   i     h㈵>r   NN{Gz?)__name__
__module____qualname____firstlineno____doc__
model_typebase_config_keyintstrfloatr   r   r*   propertyr4   __static_attributes____classcell__r-   s   @r.   r   r      s   <| 'J%O   !#!"#%!%!%;?=A#'!*#*# *# 	*#
 *# !*# *# *# *# *# *# *# *# &.d3i%8*# "*$tCy/!:*#  !!*# *#X 1S 1 1r0   r   c            (          ^  \ rS rSrSrSrSr                   SS\S\S\S\S	\S
\S\S\	S\
\   S\	S\S\	S\S\S\
\\      S\	S\S\S\
\   4&U 4S jjjrSrU =r$ )MllamaTextConfig   a  
This is the configuration class to store the configuration of a [`MllamaTextModel`]. It is used to instantiate an
Mllama text model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-11B.

e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 128256):
        Vocabulary size of the Mllama text model. Defines the maximum number of different tokens that can be represented
        by the `inputs_ids` passed when calling [`MllamaTextModel`].
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimensionality of the embeddings and hidden states.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the encoder and pooler.
    num_hidden_layers (`int`, *optional*, defaults to 40):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_key_value_heads (`int`, *optional*, defaults to 8):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If not
        specified, will default to `num_attention_heads`.
    intermediate_size (`int`, *optional*, defaults to 14336):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    rope_theta (`float`, *optional*, defaults to `500000.0`):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the rms normalization layers.
    max_position_embeddings (`int`, *optional*, defaults to 131072):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    cross_attention_layers (`List[int]`, *optional*):
        Indices of the cross attention layers. If not specified, will default to [3, 8, 13, 18, 23, 28, 33, 38].
    dropout (`float`, *optional*, defaults to 0):
        The dropout probability for self- and cross-attention layers.
    bos_token_id (`int`, *optional*, defaults to 128000):
        The id of the beginning of sentence token.
    eos_token_id (`int`, *optional*, defaults to 128001):
        The id of the end of sentence token.
    pad_token_id (`int`, *optional*, defaults to 128004):
        The id of the padding token.

Example:

```python
>>> from transformers import MllamaTextModel, MllamaTextConfig

>>> # Initializing a Mllama text config
>>> config = MllamaTextConfig()

>>> # Initializing a model from the Mllama text configuration
>>> model = MllamaTextModel(config)

>>> # Accessing the model configuration
>>> configuration = model.config
```mllama_text_modeltext_config
vocab_sizer   r   r   r   num_key_value_headsr   
rope_thetarope_scalingrms_norm_epsmax_position_embeddingsr   	use_cachetie_word_embeddingscross_attention_layersdropoutbos_token_ideos_token_idpad_token_idc                 
  > Uc  / SQnXl         X@l        Xl        X l        XPl        X`l        Xl        Xl        Xl        Xl	        Xpl
        UU l        X0l        Xl        Xl        [        U 5        [         TU ]D  " SUUUUS.UD6  g )N)r   r8         r$      !   &   )r\   rZ   r[   rW   r&   )rP   r   rX   r   r   rQ   r   rV   rR   rT   r   rY   r   rS   rU   r   r)   r*   )r+   rP   r   r   r   r   rQ   r   rR   rS   rT   rU   r   rV   rW   rX   rY   rZ   r[   r\   r,   r-   s                        r.   r*   MllamaTextConfig.__init__   s    . ")%C"$!2&<#&#6 #6 !2"$(!2$('>$t$ 	
%%% 3		

 	
r0   )rX   rY   r   r   r   r   rU   r   r   rQ   rT   rS   rR   rV   rP   )  i   silu(   r7   r8   i 8  i  Nr;   i   r<   TFNr   i  i i )r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   r   r   boolr   r*   rH   rI   rJ   s   @r.   rL   rL      s(   dL %J#O ! !##%#$!'#'+"'.#'$)6:""&,)1
1
 1
 	1

 1
 !1
 !1
 1
 1
 tn1
 1
 "%1
 !1
 1
 "1
  !)c 3!1
" #1
$ %1
& '1
( sm)1
 1
r0   rL   c                   L   ^  \ rS rSrSrSrSS0r\\S.r	   S	U 4S jjr
SrU =r$ )
MllamaConfigi+  aa  
This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-9B.

e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`):
        The config object or dictionary of the vision backbone.
    text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`):
        The config object or dictionary of the text backbone.
    image_token_index (`int`, *optional*, defaults to 128256):
        The image token index to encode the image prompt.

Example:

```python
>>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig

>>> # Initializing a CLIP-vision config
>>> vision_config = MllamaVisionConfig()

>>> # Initializing a Llama config
>>> text_config = MllamaTextConfig()

>>> # Initializing a mllama-11b style configuration
>>> configuration = MllamaConfig(vision_config, text_config)

>>> # Initializing a model from the mllama-11b style configuration
>>> model = MllamaForConditionalGeneration(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```mllamaimage_token_idimage_token_index)rO   r   c                   > Uc%  [        5       U l        [        R                  S5        OA[	        U[
        5      (       a  [        S0 UD6U l        O[	        U[         5      (       a  Xl        X0l        Uc%  [        5       U l        [        R                  S5        OA[	        U[
        5      (       a  [        S0 UD6U l        O[	        U[        5      (       a  X l        [        TU ](  " S0 UD6  g )Nz9vision_config is None, using default mllama vision configz5text_config is None, using default mllama text configr&   )r   r   loggerinfo
isinstancedictrl   rL   rO   r)   r*   )r+   r   rO   rl   r,   r-   s        r.   r*   MllamaConfig.__init__Y  s      !3!5DKKSTt,,!3!Dm!DD'9::!.!2/1DKKOPT**/>+>D%566*"6"r0   )rl   rO   r   )NNrd   )r=   r>   r?   r@   rA   rB   attribute_maprL   r   sub_configsr*   rH   rI   rJ   s   @r.   ri   ri   +  s?    %N J-M #3EWXK  	# #r0   ri   N)rA   typingr   r   r   configuration_utilsr   modeling_rope_utilsr   utilsr	   
get_loggerr=   rn   r   rL   ri   __all__r&   r0   r.   <module>r{      se    ! ' ' 3 9  
		H	%p1) p1f[
' [
|G## G#T 
r0   