
    fThk#                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zMixtral model configuration   )PretrainedConfig)loggingc            	          ^  \ rS rSrSrSrS/rSSSSSSSSS.rS	/S
/4SS/S/4S/S/4S.r                        SU 4S jjr	Sr
U =r$ )MixtralConfig   aj  
This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.

[mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
[mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 32000):
        Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`MixtralModel`]
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 14336):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_key_value_heads (`int`, *optional*, defaults to 8):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
    head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
        The attention head dimension.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
        The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
        allows sequence of up to 4096*32 tokens.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*):
        The id of the padding token.
    bos_token_id (`int`, *optional*, defaults to 1):
        The id of the "beginning-of-sequence" token.
    eos_token_id (`int`, *optional*, defaults to 2):
        The id of the "end-of-sequence" token.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether the model's input and output word embeddings should be tied.
    rope_theta (`float`, *optional*, defaults to 1000000.0):
        The base period of the RoPE embeddings.
    sliding_window (`int`, *optional*):
        Sliding window attention window size. If not specified, will default to `4096`.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    num_experts_per_tok (`int`, *optional*, defaults to 2):
        The number of experts to route per-token, can be also interpreted as the `top-k` routing
        parameter
    num_local_experts (`int`, *optional*, defaults to 8):
        Number of experts per Sparse MLP layer.
    output_router_logits (`bool`, *optional*, defaults to `False`):
        Whether or not the router logits should be returned by the model. Enabling this will also
        allow the model to output the auxiliary loss. See [here]() for more details
    router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
        The aux loss factor for the total loss.
    router_jitter_noise (`float`, *optional*, defaults to 0.0):
        Amount of noise to add to the router.

```python
>>> from transformers import MixtralModel, MixtralConfig

>>> # Initializing a Mixtral 7B style configuration
>>> configuration = MixtralConfig()

>>> # Initializing a model from the Mixtral 7B style configuration
>>> model = MixtralModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```mixtralpast_key_valuescolwiserowwisecolwise_rep)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.block_sparse_moe.gatez&layers.*.block_sparse_moe.experts.*.w1z&layers.*.block_sparse_moe.experts.*.w2z&layers.*.block_sparse_moe.experts.*.w3	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                 :  > Xl         Xl        X l        X0l        X@l        XPl        UU l        Uc  UnX`l        Xl        Xl	        Xl
        Xl        UU l        UU l        Xpl        UU l        UU l        UU l        UU l        UU l        [(        TU ]T  " SUUUUS.UD6  g )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headssliding_windownum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_dropouthead_dimnum_experts_per_toknum_local_expertsoutput_router_logitsrouter_aux_loss_coefrouter_jitter_noisesuper__init__)selfr   r   r   r   r   r!   r(   r"   r   r#   r$   r%   r   r   r   r   r&   r    r'   r)   r*   r+   r,   r-   kwargs	__class__s                             i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/mixtral/configuration_mixtral.pyr/   MixtralConfig.__init__   s    8 %'>$&!2!2#6 , &"5#6 $!2("$!2 #6 !2$8!$8!#6  	
%%% 3		

 	
    )r'   r(   r"   r   r#   r   r   r   r)   r   r!   r*   r+   r$   r&   r,   r-   r    r%   r   )i }  i   i 8      r6      Nsilui   g{Gz?gh㈵>TN      Fg    .AN        r:   r7   FgMbP?r;   )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr/   __static_attributes____classcell__)r2   s   @r3   r   r      s    Sj J#4"5%.%.%.%.*72;2;2;	 &(9:#%568IJ!"_$56  )!""3<
 <
r5   r   N)
r@   configuration_utilsr   utilsr   
get_loggerr<   loggerr   __all__r   r5   r3   <module>rL      s<    " 3  
		H	%d
$ d
N 
r5   