
    fThG                        S SK JrJrJrJrJr  S SKrS SKJr  SSKJ	r	  SSK
JrJrJrJr  SSKJr  SSKJr  SS	KJr  SS
KJr  SSKJr  SSKJrJrJrJrJr  SSKJ r J!r!  SSK"J#r#J$r$  SSK%J&r&  SSK'J(r(J)r)J*r*J+r+J,r,  SSK-J.r.  \+" 5       (       a  S SK/J0r0  SSK1J2r2  \,Rf                  " \45      r5 " S S\Rl                  5      r7S r8S?S jr9S\Rt                  S\;S\Rt                  4S jr< S@S\Rl                  S\Rt                  S\Rt                  S \Rt                  S!\\Rt                     S"\=S#\=4S$ jjr> " S% S&\Rl                  5      r?\" S'5       " S( S)\Rl                  5      5       r@ " S* S+\5      rA\) " S, S-\$5      5       rB " S. S/\Rl                  5      rC\) " S0 S1\B5      5       rD " S2 S3\\(5      rE\) " S4 S5\B\5      5       rF\) " S6 S7\B5      5       rG\)" S8S99 " S: S;\B5      5       rH\) " S< S=\B5      5       rI/ S>QrJg)A    )CallableListOptionalTupleUnionN)nn   )ACT2FN)CacheDynamicCacheSlidingWindowCacheStaticCache)GenerationMixin)use_kernel_forward_from_hub)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPastQuestionAnsweringModelOutput SequenceClassifierOutputWithPastTokenClassifierOutput)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)
LossKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )MistralConfig)	BlockMask)make_flex_block_causal_maskc                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )
MistralMLP*   c                   > [         TU ]  5         Xl        UR                  U l        UR                  U l        [
        R                  " U R                  U R                  SS9U l        [
        R                  " U R                  U R                  SS9U l        [
        R                  " U R                  U R                  SS9U l	        [        UR                     U l        g NFbias)super__init__confighidden_sizeintermediate_sizer   Linear	gate_projup_proj	down_projr
   
hidden_actact_fnselfr0   	__class__s     d/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/mistral/modeling_mistral.pyr/   MistralMLP.__init__+   s    !--!'!9!94#3#3T5K5KRWXyy!1!143I3IPUV4#9#94;K;KRWXV../    c                     U R                  U R                  U R                  U5      5      U R                  U5      -  5      nU$ N)r6   r8   r4   r5   )r:   xr6   s      r<   forwardMistralMLP.forward5   s6    NN4;;t~~a/@#ADLLQRO#ST	r>   )r8   r0   r6   r4   r1   r2   r5   )__name__
__module____qualname____firstlineno__r/   rB   __static_attributes____classcell__r;   s   @r<   r(   r(   *   s    0 r>   r(   c                     U SSU R                   S   S-  24   nU SU R                   S   S-  S24   n[        R                  " U* U4SS9$ )z*Rotates half the hidden dims of the input..N   dim)shapetorchcat)rA   x1x2s      r<   rotate_halfrU   :   sZ    	
3"!''"+"""	#B	
3q ""	#B99rc2YB''r>   c                     UR                  U5      nUR                  U5      nX-  [        U 5      U-  -   nX-  [        U5      U-  -   nXg4$ )a  Applies Rotary Position Embedding to the query and key tensors.

Args:
    q (`torch.Tensor`): The query tensor.
    k (`torch.Tensor`): The key tensor.
    cos (`torch.Tensor`): The cosine part of the rotary embedding.
    sin (`torch.Tensor`): The sine part of the rotary embedding.
    position_ids (`torch.Tensor`, *optional*):
        Deprecated and unused.
    unsqueeze_dim (`int`, *optional*, defaults to 1):
        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
)	unsqueezerU   )qkcossinposition_idsunsqueeze_dimq_embedk_embeds           r<   apply_rotary_pos_embr`   A   sS    ( --
&C
--
&Cw;q>C/0Gw;q>C/0Gr>   hidden_statesn_repreturnc                     U R                   u  p#pEUS:X  a  U $ U SS2SS2SSS2SS24   R                  X#XU5      n U R                  X#U-  XE5      $ )z
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
r#   N)rP   expandreshape)ra   rb   batchnum_key_value_headsslenhead_dims         r<   	repeat_kvrk   \   s_    
 2?1D1D.Ez!!Qa"23::5W\dlmM  e(CTTTr>   modulequerykeyvalueattention_maskscalingdropoutc                 @   [        X R                  5      n[        X0R                  5      n	[        R                  " XR	                  SS5      5      U-  n
Ub"  US S 2S S 2S S 2S UR
                  S   24   nX-   n
[        R                  R                  U
S[        R                  S9R                  UR                  5      n
[        R                  R                  XU R                  S9n
[        R                  " X5      nUR	                  SS5      R                  5       nX4$ )NrM   r	   rL   )rO   dtype)ptrainingr#   )rk   num_key_value_groupsrQ   matmul	transposerP   r   
functionalsoftmaxfloat32toru   rr   rw   
contiguous)rl   rm   rn   ro   rp   rq   rr   kwargs
key_statesvalue_statesattn_weightscausal_maskattn_outputs                r<   eager_attention_forwardr   h   s     3 ; ;<JU$?$?@L<<';';Aq'ABWLL!$Q1.D
0@0@0D.D%DE#1==((2U]](SVVW\WbWbcL==((6??([L,,|:K''1-88:K$$r>   c                   F  ^  \ rS rSrSrS\S\4U 4S jjr  SS\R                  S\
\R                  \R                  4   S\\R                     S	\\   S
\\R                     S\\   S\
\R                  \\R                     \\
\R                        4   4S jjrSrU =r$ )MistralAttention   z=Multi-headed attention from 'Attention Is All You Need' paperr0   	layer_idxc                   > [         TU ]  5         Xl        X l        [	        USS 5      =(       d    UR
                  UR                  -  U l        UR                  UR                  -  U l	        U R                  S-  U l
        UR                  U l        SU l        [        R                  " UR
                  UR                  U R                  -  SS9U l        [        R                  " UR
                  UR                  U R                  -  SS9U l        [        R                  " UR
                  UR                  U R                  -  SS9U l        [        R                  " UR                  U R                  -  UR
                  SS9U l        g )Nrj   g      TFr,   )r.   r/   r0   r   getattrr1   num_attention_headsrj   rh   rx   rq   attention_dropout	is_causalr   r3   q_projk_projv_projo_projr:   r0   r   r;   s      r<   r/   MistralAttention.__init__   s.   "
D9mV=O=OSYSmSm=m$*$>$>&B\B\$\!}}d*!'!9!9ii 2 2F4N4NQUQ^Q^4^ejkii 2 2F4N4NQUQ^Q^4^ejkii 2 2F4N4NQUQ^Q^4^ejkii : :T]] JFL^L^ejkr>   ra   position_embeddingsrp   past_key_valuecache_positionr   rc   c           
         UR                   S S n/ UQSPU R                  P7nU R                  U5      R                  U5      R	                  SS5      n	U R                  U5      R                  U5      R	                  SS5      n
U R                  U5      R                  U5      R	                  SS5      nUu  p[        XX5      u  pUb$  XUS.nUR                  XU R                  U5      u  p[        nU R                  R                  S:w  ad  U R                  R                  S:X  a-  UR                  SS5      (       a  [        R                  S	5        O[         U R                  R                     nU" U U	U
UU4U R"                  (       d  S
OU R$                  U R&                  [)        U R                  SS 5      S.UD6u  nnUR*                  " / UQSP76 R-                  5       nU R/                  U5      nUU4$ )NrL   r#   rM   )r[   rZ   r   eagersdpaoutput_attentionsFz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        sliding_window)rr   rq   r   )rP   rj   r   viewrz   r   r   r`   updater   r   r0   _attn_implementationgetloggerwarning_oncer   rw   r   rq   r   rf   r   r   )r:   ra   r   rp   r   r   r   input_shapehidden_shapequery_statesr   r   rZ   r[   cache_kwargsattention_interfacer   r   s                     r<   rB   MistralAttention.forward   s    $))#2.88b8$--8{{=166|DNNqRST[[/44\BLLQPQR
{{=166|DNNqRST&#7RU#[ %#&nUL'5'<'<ZW[WeWegs't$J(?;;++w6{{//69fjjI\^c>d>d##L
 '>dkk>^>^&_#$7
%
  $}}C$2H2HLL"4;;0@$G
%
 
%
!\ "));;;;FFHkk+.L((r>   )r   r0   rj   r   r   r   rx   r   r   rq   r   )NN)rD   rE   rF   rG   __doc__r$   intr/   rQ   Tensorr   r   r   
LongTensorr   r   rB   rH   rI   rJ   s   @r<   r   r      s    Gl} l l& +/590)||0) #5<<#=>0) !.	0)
 !0) !!1!120) -.0) 
u||Xell3XeELL>Q5RR	S0) 0)r>   r   RMSNormc                   8   ^  \ rS rSrSU 4S jjrS rS rSrU =r$ )MistralRMSNorm   c                    > [         TU ]  5         [        R                  " [        R
                  " U5      5      U l        X l        g)z-
MistralRMSNorm is equivalent to T5LayerNorm
N)r.   r/   r   	ParameterrQ   onesweightvariance_epsilon)r:   r1   epsr;   s      r<   r/   MistralRMSNorm.__init__   s/     	ll5::k#:; #r>   c                    UR                   nUR                  [        R                  5      nUR	                  S5      R                  SSS9nU[        R                  " X0R                  -   5      -  nU R                  UR                  U5      -  $ )NrM   rL   T)keepdim)	ru   r~   rQ   r}   powmeanrsqrtr   r   )r:   ra   input_dtypevariances       r<   rB   MistralRMSNorm.forward   sw    #))%((7 $$Q',,R,>%H?T?T4T(UU{{]--k:::r>   c                 ^    [        U R                  R                  5       SU R                   3$ )Nz, eps=)tupler   rP   r   r:   s    r<   
extra_reprMistralRMSNorm.extra_repr   s*    ))*+6$2G2G1HIIr>   )r   r   )gư>)	rD   rE   rF   rG   r/   rB   r   rH   rI   rJ   s   @r<   r   r      s    $;J Jr>   r   c                     ^  \ rS rSrS\S\4U 4S jjr       SS\R                  S\	\R                     S\	\R                     S\	\   S	\	\   S
\	\   S\	\R                     S\	\\R                  \R                  4      S\\   S\\R                   \	\\R                   \R                   4      4   4S jjrSrU =r$ )MistralDecoderLayer   r0   r   c                   > [         TU ]  5         UR                  U l        [        XS9U l        [        U5      U l        [        UR                  UR                  S9U l	        [        UR                  UR                  S9U l
        g )N)r0   r   r   )r.   r/   r1   r   	self_attnr(   mlpr   rms_norm_epsinput_layernormpost_attention_layernormr   s      r<   r/   MistralDecoderLayer.__init__   sj    !--)Mf%-f.@.@fFYFYZ(6v7I7IvObOb(c%r>   ra   rp   r\   r   r   	use_cacher   r   r   rc   c	                     Un
U R                  U5      nU R                  " SUUUUUUUUS.U	D6u  pX-   nUn
U R                  U5      nU R                  U5      nX-   nU4nU(       a  X4-  nU$ )N)ra   rp   r\   r   r   r   r   r    )r   r   r   r   )r:   ra   rp   r\   r   r   r   r   r   r   residualself_attn_weightsoutputss                r<   rB   MistralDecoderLayer.forward   s     !,,]; ,0>> 
,
')%)/) 3
,
 
,
( !0 !55mD/ 0 "++Gr>   )r1   r   r   r   r   )NNNFFNN)rD   rE   rF   rG   r$   r   r/   rQ   r   r   r   r   boolr   r   r   FloatTensorrB   rH   rI   rJ   s   @r<   r   r      s   d} d d 2637*.,1$)59KO'||' !.' u//0	'
 !' $D>' D>' !!1!12' &eELL%,,,F&GH' -.' 
u  (51B1BEDUDU1U+V"WW	X' 'r>   r   c                   N    \ rS rSr\rSrSrS/rS/r	Sr
SrSrSrSrSrSrS rSrg)	MistralPreTrainedModeli  modelTr   past_key_valuesc                    U R                   R                  n[        U[        R                  5      (       aW  UR
                  R                  R                  SUS9  UR                  b%  UR                  R                  R                  5         g g [        U[        R                  5      (       ad  UR
                  R                  R                  SUS9  UR                  b2  UR
                  R                  UR                     R                  5         g g [        U[        5      (       a&  UR
                  R                  R                  S5        g g )Nr   )r   stdg      ?)r0   initializer_range
isinstancer   r3   r   datanormal_r-   zero_	Embeddingpadding_idxr   fill_)r:   rl   r   s      r<   _init_weights$MistralPreTrainedModel._init_weights  s    kk++fbii((MM&&CS&9{{&  &&( '--MM&&CS&9!!-""6#5#56<<> .//MM$$S) 0r>   r   N)rD   rE   rF   rG   r$   config_classbase_model_prefixsupports_gradient_checkpointing_no_split_modules_skip_keys_device_placement_supports_flash_attn_2_supports_sdpa_supports_flex_attn_supports_cache_class_supports_quantized_cache_supports_static_cache_supports_attention_backendr   rH   r   r>   r<   r   r     sS     L&*#./#4"5!N  $!"&*r>   r   c                   l   ^  \ rS rSrSS\4U 4S jjjr\R                  " 5       \S 5       5       r	Sr
U =r$ )MistralRotaryEmbeddingi+  r0   c                   > [         TU ]  5         [        US5      (       aH  UR                  b;  UR                  R	                  SUR                  R	                  S5      5      U l        OSU l        UR                  U l        UR                  U l        Xl	        [        U R
                     U l        U R                  U R                  U5      u  o0l        U R                  SUSS9  U R                  U l        g )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)r.   r/   hasattrr   r   r   max_position_embeddingsmax_seq_len_cachedoriginal_max_seq_lenr0   r   rope_init_fnattention_scalingregister_bufferr   original_inv_freq)r:   r0   devicer   r;   s       r<   r/   MistralRotaryEmbedding.__init__,  s    6>**v/B/B/N#0044[&BUBUBYBYZ`BabDN&DN"("@"@$*$B$B!/?+/+<+<T[[&+Q((ZeD!%r>   c                 b   U R                   S S S 2S 4   R                  5       R                  UR                  S   SS5      R	                  UR
                  5      nUS S 2S S S 24   R                  5       n[        UR
                  R                  [        5      (       a0  UR
                  R                  S:w  a  UR
                  R                  OSn[        R                  " USS9   UR                  5       UR                  5       -  R                  SS5      n[        R                  " Xf4SS	9nUR                  5       U R                  -  nUR                  5       U R                  -  n	S S S 5        WR	                  UR                   S
9W	R	                  UR                   S
94$ ! , (       d  f       N@= f)Nr   rL   r#   mpscpuF)device_typeenabledrM   rN   )ru   )r   floatre   rP   r~   r  r   r   strrQ   autocastrz   rR   rZ   r  r[   ru   )
r:   rA   r\   inv_freq_expandedposition_ids_expandedr  freqsembrZ   r[   s
             r<   rB   MistralRotaryEmbedding.forward=  sR    !MM$4-8>>@GGHZHZ[\H]_acdehhijiqiqr ,QaZ 8 > > @'1!((--'E'E!((--[`J`ahhmmfk^^UC&,,.1F1L1L1NNYYZ[]^_E))UN3C'')d444C'')d444C	 D vvAGGv$cff177f&;;; DCs   $BF  
F.)r  r0   r  r  r  r  r   r@   )rD   rE   rF   rG   r$   r/   rQ   no_gradr   rB   rH   rI   rJ   s   @r<   r   r   +  s6    /} / /" ]]_<  <r>   r   c                     ^  \ rS rSrS\4U 4S jjrS rS r\\	         SS\
\R                     S\
\R                     S\
\R                     S	\
\   S
\
\R                     S\
\   S\
\   S\
\   S\
\R                     S\\   S\4S jj5       5       r SS\\R                  S4   S\R                  S\R                  S	\S\4
S jjr\S\R                  S\S\S\R2                  S\R                  S\S\S	\4S j5       rSrU =r$ )MistralModeliM  r0   c           	        > [         TU ]  U5        UR                  U l        UR                  U l        [
        R                  " UR                  UR                  U R                  5      U l        [
        R                  " [        UR                  5       Vs/ s H  n[        X5      PM     sn5      U l        [        UR                  UR                  S9U l        [#        US9U l        SU l        U R)                  5         g s  snf )Nr   )r0   F)r.   r/   pad_token_idr   
vocab_sizer   r   r1   embed_tokens
ModuleListrangenum_hidden_layersr   layersr   r   normr   
rotary_embgradient_checkpointing	post_initr   s      r<   r/   MistralModel.__init__O  s     !.. ++LL):):F<N<NPTP`P`ammEJ6KcKcEdeEd	 3Ede
 #6#5#56;N;NO	0?&+# 	 fs   C?c                     U R                   $ r@   r  r   s    r<   get_input_embeddings!MistralModel.get_input_embeddings_  s       r>   c                     Xl         g r@   r(  r:   ro   s     r<   set_input_embeddings!MistralModel.set_input_embeddingsb  s    !r>   	input_idsrp   r\   r   inputs_embedsr   r   output_hidden_statesr   flash_attn_kwargsrc   c
                 J   Ub  UOU R                   R                  nUb  UOU R                   R                  nUb  UOU R                   R                  nUS L US L-  (       a  [	        S5      eU R
                  (       a/  U R                  (       a  U(       a  [        R                  S5        Sn[        U[        S 5      [        45      (       d  [	        S5      eUc  U R                  U5      nU(       a  Uc
  [        5       nU	cD  Ub  UR                  5       OSn[        R                   " XUR"                  S   -   UR$                  S9n	Uc  U	R'                  S5      nU R)                  X%XU5      nUnU R+                  X5      nU(       a  SOS nU(       a  SOS nU R,                  S U R                   R.                    H7  nU(       a  X4-  nU" U4UUUUUU	US	.U
D6nUS   nU(       d  M.  UUS   4-  nM9     U R1                  U5      nU(       a  X4-  n[3        UU(       a  UOS UUS
9$ )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.FzBThe `past_key_values` should be either a `Cache` object or `None`.r   r#   r  r   )rp   r\   r   r   r   r   r   )last_hidden_stater   ra   
attentions)r0   r   r1  r   
ValueErrorr$  rw   r   r   r   r   r   r  r   get_seq_lengthrQ   arangerP   r  rW   _update_causal_maskr#  r!  r   r"  r   )r:   r/  rp   r\   r   r0  r   r   r1  r   r2  past_seen_tokensr   ra   r   all_hidden_statesall_self_attnsdecoder_layerlayer_outputss                      r<   rB   MistralModel.forwarde  sI    2C1N-TXT_T_TqTq$8$D $++JjJj 	 "+!6IDKK<Q<Q	-t";<YZZ&&4==Yj I /DJ+>??abb  --i8M0*nO!CRC^==?de"\\ ]5H5H5K"KTaThThN )33A6L..>L]
 & #oomJ #7BD0d![[)H4;;+H+HIM#!%55!)
*)."3#-$7
 $
M *!,M  =#3"55' J* 		-0  !11&+/8Od+%	
 	
r>   r%   input_tensorc                    U R                   R                  S:X  a]  UbN  UbK  US S 2S4   R                  5       R                  5       UR	                  5       S   :g  nU(       a  [        S5      eUb  SU;   a  U$ g U R                   R                  S:X  a,  [        U[        R                  5      (       a  [        U5      nU$ Ub  UR                  5       OSn[        U[        5      n[        U[        5      n	U R                   R                  S:X  aQ  U(       dJ  U	(       dC  U(       d<  [        R                  " UUUU R                   R                  U R                   S9(       a  g UR"                  n
[        R$                  " U
5      R&                  nUR(                  S	   nU	(       d  U(       a  UR+                  5       nO5[        U[        R                  5      (       a  UR(                  S   OX|-   S	-   nU R-                  UUUU
UUR(                  S   U R                   US
9nU R                   R                  S:X  a:  Ub7  UR.                  R0                  S;   a  U(       d  [        R2                  " X5      nU$ )Nflash_attention_2rL   r   zYou are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing the input. r   flex_attentionr   )r0  past_key_values_lengthr   is_trainingr#   )sequence_lengthtarget_lengthru   r   
batch_sizer0   r   )cudaxpunpu)r0   r   sumitemsizer7  r   rQ   r   r&   r8  r   r   r   _ignore_causal_mask_sdpar   rw   ru   finfominrP   get_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positionr  r   _unmask_unattended)r:   rp   rA  r   r   r   is_padding_rightr;  using_static_cacheusing_sliding_window_cacheru   	min_dtyperG  rH  r   s                  r<   r:   MistralModel._update_causal_mask  s;    ;;++/BB)o.I#1!R%#8#<#<#>#C#C#EIZIZI\]^I_#_ #$a 
 )c^.C%%;;++/??.%,,77!<^!L!!
 @O?Z?99;`a'E%/AS%T" KK,,6'+E%%>>*'7#{{99 MM ""KK&**	&,,Q/%);+??AM
 nell;; $$R(%7!;  PP+')#))!,;;+ Q 	
 KK,,6*%%**.DD%
 1CCK[Kr>   rG  rH  ru   rI  c                    U b  U R                  5       S:X  a  U nU$ [        R                  " U5      R                  n	[        R                  " X4XUR
                  S9n[        R                  " X$R
                  S9UR                  SS5      :  n
UR                  5       n[        USS5      (       av  UR                  bi  [        U[        5      (       a  X:  aO  [        R                  " X$R
                  S9UR                  SS5      UR                  -
  :*  nU
R                  U5        X-  nUSSSS2SS24   R                  USSS5      nU b  UR                  5       nU R                   S   U:  a  U SS2SU24   n U R                   S   nUSS2SS2SS2SU24   U SS2SSSS24   R#                  UR
                  5      -   nUS	:H  nUSS2SS2SS2SU24   R%                  X5      USS2SS2SS2SU24'   U$ )
aS  
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

Args:
    attention_mask (`torch.Tensor`):
        A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
    sequence_length (`int`):
        The sequence length being processed.
    target_length (`int`):
        The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
    dtype (`torch.dtype`):
        The dtype to use for the 4D attention mask.
    cache_position (`torch.Tensor`):
        Indices depicting the position of the input sequence tokens in the sequence.
    batch_size (`torch.Tensor`):
        Batch size.
    config (`MistralConfig`):
        The model's configuration class
    past_key_values (`Cache`):
        The cache class that is being used currently to generate
N   )
fill_valueru   r  r4  rL   r#   use_sliding_windowTr   )rO   rQ   rQ  rR  fullr  r9  rf   get_text_configr   r   r   r   bitwise_or_re   clonerP   r~   masked_fill)rp   rG  rH  ru   r   rI  r0   r   r   rY  diagonal_attend_masktext_configsliding_attend_maskmask_lengthpadding_masks                  r<   rT  BMistralModel._prepare_4d_causal_attention_mask_with_cache_position  s   B %.*<*<*>!*C(K@ = E*..I** 0Y\j\q\qK $)<<F[F[#\_m_u_uA` $  !002K{$8$??KD^D^Dj "/3EFF/Ji*/,,}MbMb*c&..r158R8RR+' )445HI/K%dD!Q&67>>z1bRTUK))//1!''+m;%3A~~4E%FN,2226*1aL[L+@ANSTVZ\`bcScDdDgDg&&E    ,q05@Aq,;,AV5W5c5c 6Aq!\k\12 r>   )r  r$  r!  r"  r   r#  r  	NNNNNNNNN)F)rD   rE   rF   rG   r$   r/   r)  r-  r    r   r   rQ   r   r   r   r   r   r   r   r   rB   r   r:  staticmethodr   ru   rT  rH   rI   rJ   s   @r<   r  r  M  s   }  !"  151537+/59$(,0/359\
E,,-\
 !.\
 u//0	\

 "%\
   1 12\
 D>\
 $D>\
 'tn\
 !!1!12\
 $$89\
 
!\
  \
H #(TellK78T llT 	T
 T  Tl BBB B {{	B
 B B B B Br>   r  c                       \ rS rSrSrg)KwargsForCausalLMia  r   N)rD   rE   rF   rG   rH   r   r>   r<   rm  rm  a  s    3r>   rm  c                     ^  \ rS rSrS/rSS0rSS/S/40rU 4S jrS rS	 r	S
 r
S rS rS r\\           SS\\R$                     S\\R&                     S\\R$                     S\\   S\\R*                     S\\R$                     S\\   S\\   S\\   S\\R$                     S\\\R&                  4   S\\   S\4S jj5       5       rSrU =r$ )MistralForCausalLMid  zlm_head.weightlm_headcolwise_repra   logitsc                    > [         TU ]  U5        [        U5      U l        UR                  U l        [
        R                  " UR                  UR                  SS9U l        U R                  5         g r+   )
r.   r/   r  r   r  r   r3   r1   rp  r%  r9   s     r<   r/   MistralForCausalLM.__init__j  sU     !&)
 ++yy!3!3V5F5FUS 	r>   c                 .    U R                   R                  $ r@   r   r  r   s    r<   r)  'MistralForCausalLM.get_input_embeddingss      zz&&&r>   c                 $    XR                   l        g r@   rv  r,  s     r<   r-  'MistralForCausalLM.set_input_embeddingsv      "'

r>   c                     U R                   $ r@   rp  r   s    r<   get_output_embeddings(MistralForCausalLM.get_output_embeddingsy  s    ||r>   c                     Xl         g r@   r}  )r:   new_embeddingss     r<   set_output_embeddings(MistralForCausalLM.set_output_embeddings|  s    %r>   c                     Xl         g r@   r   )r:   decoders     r<   set_decoderMistralForCausalLM.set_decoder  s    
r>   c                     U R                   $ r@   r  r   s    r<   get_decoderMistralForCausalLM.get_decoder  s    zzr>   r/  rp   r\   r   r0  labelsr   r   r1  r   logits_to_keepr   rc   c                    Ub  UOU R                   R                  nU	b  U	OU R                   R                  n	U R                  " SUUUUUUUU	U
S.	UD6nUR                  n[        U[        5      (       a  [        U* S5      OUnU R                  USS2USS24   5      nSnUb)  U R                  " SUX`R                   R                  S.UD6n[        UUUR                  UR                  UR                  S9$ )a   
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
    config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
    (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

Example:

```python
>>> from transformers import AutoTokenizer, MistralForCausalLM

>>> model = MistralForCausalLM.from_pretrained("meta-mistral/Mistral-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-mistral/Mistral-2-7b-hf")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```N)	r/  rp   r\   r   r0  r   r   r1  r   )rr  r  r  lossrr  r   ra   r6  r   )r0   r   r1  r   r5  r   r   slicerp  loss_functionr  r   r   ra   r6  )r:   r/  rp   r\   r   r0  r  r   r   r1  r   r  r   r   ra   slice_indicesrr  r  s                     r<   rB   MistralForCausalLM.forward  s   N 2C1N-TXT_T_TqTq$8$D $++JjJj 	
 ,0:: ,
)%+'/!5),
 ,
  118B>SV8W8W~ot4]kmA}a,?@A%%pVF{{OeOepiopD%#33!//))
 	
r>   )rp  r   r  )NNNNNNNNNNr   )rD   rE   rF   rG   _tied_weights_keys_tp_plan_pp_planr/   r)  r-  r~  r  r  r  r    r   r   rQ   r   r   r   r   r   r   r   r   rm  r   rB   rH   rI   rJ   s   @r<   ro  ro  d  s   *+=)H_-z:;H'(&  151537+/59-1$(,0/35934G
E,,-G
 !.G
 u//0	G

 "%G
   1 12G
 ))*G
 D>G
 $D>G
 'tnG
 !!1!12G
 c5<</0G
 *+G
 
 G
  G
r>   ro  c                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ )MistralForTokenClassificationi  c                   > [         TU ]  U5        UR                  U l        [        U5      U l        [        USS 5      b  UR                  nO[        USS 5      b  UR                  nOSn[        R                  " U5      U l
        [        R                  " UR                  UR                  5      U l        U R                  5         g )Nclassifier_dropouthidden_dropoutg?)r.   r/   
num_labelsr  r   r   r  r  r   Dropoutrr   r3   r1   scorer%  )r:   r0   r  r;   s      r<   r/   &MistralForTokenClassification.__init__  s      ++!&)
6/6B!'!:!:V-t4@!'!6!6!$zz"45YYv1163D3DE
 	r>   c                 .    U R                   R                  $ r@   rv  r   s    r<   r)  2MistralForTokenClassification.get_input_embeddings  rx  r>   c                 $    XR                   l        g r@   rv  r,  s     r<   r-  2MistralForTokenClassification.set_input_embeddings  r{  r>   r/  rp   r\   r   r0  r  r   r   r1  rc   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nU R                  U5      nSnUb  U R	                  XU R
                  5      n[        UUU
R                  U
R                  S9$ )e  
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
    config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
    `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
rp   r\   r   r0  r   r   r1  N)r  rr  ra   r6  )	r   r5  rr   r  r  r0   r   ra   r6  )r:   r/  rp   r\   r   r0  r  r   r   r1  r   sequence_outputrr  r  s                 r<   rB   %MistralForTokenClassification.forward  s    * ,0::)%+'/!5 ,6 	,
 "33,,7O,%%fdkkBD$!//))	
 	
r>   )rr   r   r  r  rj  )rD   rE   rF   rG   r/   r)  r-  r    r   r   rQ   r   r   r   r   r   r   rB   rH   rI   rJ   s   @r<   r  r    s     '(  151537+/59-1$(,0/3*
E,,-*
 !.*
 u//0	*

 "%*
   1 12*
 ))**
 D>*
 $D>*
 'tn*
 
*
  *
r>   r  a  
    The Mistral Model transformer with a sequence classification head on top (linear layer).

    [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )custom_introc                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ ) MistralForSequenceClassificationi  c                    > [         TU ]  U5        UR                  U l        [        U5      U l        [
        R                  " UR                  U R                  SS9U l        U R                  5         g r+   )
r.   r/   r  r  r   r   r3   r1   r  r%  r9   s     r<   r/   )MistralForSequenceClassification.__init__'  sS      ++!&)
YYv114??O
 	r>   c                 .    U R                   R                  $ r@   rv  r   s    r<   r)  5MistralForSequenceClassification.get_input_embeddings0  rx  r>   c                 $    XR                   l        g r@   rv  r,  s     r<   r-  5MistralForSequenceClassification.set_input_embeddings3  r{  r>   r/  rp   r\   r   r0  r  r   r   r1  rc   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nUb  UR                  S   nOUR                  S   nU R                  R
                  c  US:w  a  [        S5      eU R                  R
                  c  SnOUb  XR                  R
                  :g  R                  UR                  [        R                  5      n[        R                  " UR                  S   UR                  [        R                  S9nUU-  R                  S5      nO.Sn[        R                  U R                  R                    S35        U[        R                  " XR                  S	9U4   nSnUb  U R#                  XUU R                  S
9n[%        UUU
R&                  U
R(                  U
R*                  S9$ )r  r  Nr   r#   z=Cannot handle batch sizes > 1 if no padding token is defined.rL   )r  ru   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r4  )rr  r  pooled_logitsr0   r  )r   r5  r  rP   r0   r  r7  r~   r  rQ   int32r9  argmaxr   r   r;   rD   r  r   r   ra   r6  )r:   r/  rp   r\   r   r0  r  r   r   r1  transformer_outputsra   rr  rI  last_non_pad_tokennon_pad_masktoken_indicesr  r  s                      r<   rB   (MistralForSequenceClassification.forward6  s   * 8<zz)%+'/!5 8B 	8
 ,==M* "+J&,,Q/J;;##+
a\]];;##+!#"%)A)AAEEfmmUZU`U`aL!LL)<V]]Z_ZeZefM"/,">!F!Fr!J!#>>**+ ,Z Z
 u||J}}MOaab%%VR_hlhshs%tD/ /??-;;*55
 	
r>   )r   r  r  rj  )rD   rE   rF   rG   r/   r)  r-  r    r   r   rQ   r   r   r   r   r   r   rB   rH   rI   rJ   s   @r<   r  r    s    '(  151537+/59-1$(,0/3A
E,,-A
 !.A
 u//0	A

 "%A
   1 12A
 ))*A
 D>A
 $D>A
 'tnA
 
*A
  A
r>   r  c                   f  ^  \ rS rSrSrU 4S jrS rS r\\	         SS\
\R                     S\
\R                     S\
\R                     S	\
\\\\R"                     4      S
\
\R"                     S\
\R                     S\
\R                     S\
\   S\
\   S\4S jj5       5       rSrU =r$ )MistralForQuestionAnsweringi|  r   c                    > [         TU ]  U5        [        R                  " UR                  S5      U l        [        U5      U l        U R                  5         g )NrM   )	r.   r/   r   r3   r1   
qa_outputsr  r   r%  r9   s     r<   r/   $MistralForQuestionAnswering.__init__  s@     ))F$6$6:!&)
 	r>   c                 .    U R                   R                  $ r@   rv  r   s    r<   r)  0MistralForQuestionAnswering.get_input_embeddings  rx  r>   c                 $    XR                   l        g r@   rv  r,  s     r<   r-  0MistralForQuestionAnswering.set_input_embeddings  r{  r>   r/  rp   r\   r   r0  start_positionsend_positionsr   r1  rc   c
           
         U R                  UUUUUUU	S9nUR                  nU R                  U5      nUR                  SSS9u  pUR	                  S5      R                  5       nUR	                  S5      R                  5       nSnUb  Ub  U R                  " XXg40 U
D6n[        UUUUR                  UR                  S9$ )a  
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for position (index) of the start of the labelled span for computing the token classification loss.
    Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
    are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for position (index) of the end of the labelled span for computing the token classification loss.
    Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
    are not taken into account for computing the loss.
)rp   r\   r   r0  r   r1  r#   rL   rN   N)r  start_logits
end_logitsra   r6  )
r   r5  r  splitsqueezer   r  r   ra   r6  )r:   r/  rp   r\   r   r0  r  r  r   r1  r   r   r  rr  r  r  r  s                    r<   rB   #MistralForQuestionAnswering.forward  s    4 ,0::)%+'/!5 ,6 ,
 "331#)<<r<#: #++B/::<''+668
&=+D%%libhiD+%!!//))
 	
r>   )r   r  rj  )rD   rE   rF   rG   r   r/   r)  r-  r    r   r   rQ   r   r   r   r   r   r   r   r   rB   rH   rI   rJ   s   @r<   r  r  |  s   '(  151537KO596:48,0/33
E,,-3
 !.3
 u//0	3

 "%tE4E4E/F(F"GH3
   1 123
 "%"2"233
   0 013
 $D>3
 'tn3
 
&3
  3
r>   r  )ro  r  r  r   r  r  )Nr#   )r   )Ktypingr   r   r   r   r   rQ   r   activationsr
   cache_utilsr   r   r   r   
generationr   integrationsr   modeling_attn_mask_utilsr   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr   r   r   r   r   modeling_rope_utilsr   r   modeling_utilsr   r   processing_utilsr   utilsr   r   r    r!   r"   configuration_mistralr$   !torch.nn.attention.flex_attentionr%   integrations.flex_attentionr&   
get_loggerrD   r   Moduler(   rU   r`   r   r   rk   r  r   r   r   r   r   r   r  rm  ro  r  r  r  __all__r   r>   r<   <module>r     sF   : 9   ! O O ) 7 > B 9  L F & h h 0  !!;J 
		H	%  (6	UU\\ 	U# 	U%,, 	U& %II%<<% 
% <<	%
 U\\*% % %4A)ryy A)H Y'JRYY J (J(04 0f *_ * *8<RYY <D P) P Pf ?,j > i
/ i
 i
X C
$: C
 C
L S
'= S
S
l F
"8 F
 F
Rr>   