
    fThA                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zLiLT configuration   )PretrainedConfig)loggingc                   V   ^  \ rS rSrSrSr                 SU 4S jjrSrU =r$ )
LiltConfig   a  
This is the configuration class to store the configuration of a [`LiltModel`]. It is used to instantiate a LiLT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LiLT
[SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the LiLT model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`LiltModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer. Should be a multiple of 24.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`LiltModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
        positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
        [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
        For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
        with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
    classifier_dropout (`float`, *optional*):
        The dropout ratio for the classification head.
    channel_shrink_ratio (`int`, *optional*, defaults to 4):
        The shrink ratio compared to the `hidden_size` for the channel dimension of the layout embeddings.
    max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
        The maximum value that the 2D position embedding might ever be used with. Typically set this to something
        large just in case (e.g., 1024).

Examples:

```python
>>> from transformers import LiltConfig, LiltModel

>>> # Initializing a LiLT SCUT-DLVCLab/lilt-roberta-en-base style configuration
>>> configuration = LiltConfig()
>>> # Randomly initializing a model from the SCUT-DLVCLab/lilt-roberta-en-base style configuration
>>> model = LiltModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```liltc                    > [         TU ]  " SSU0UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        UU l        UU l        g )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_typeclassifier_dropoutchannel_shrink_ratiomax_2d_position_embeddings)selfr   r   r   r   r   r   r   r   r   r   r   r   r
   r   r   r   r   kwargs	__class__s                      c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/lilt/configuration_lilt.pyr   LiltConfig.__init__Z   s|    * 	=l=f=$&!2#6 $!2#6 ,H)'>$.!2,'>$"4$8!*D'    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )i:w  i      r$   i   gelu皙?r&   i      g{Gz?g-q=    absoluteN   i   )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r    s   @r!   r   r      sQ    =~ J %( # *#'%&E &Er#   r   N)
r/   configuration_utilsr   utilsr   
get_loggerr+   loggerr   __all__r   r#   r!   <module>r8      s=     3  
		H	%hE! hEV .r#   