
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zJetMoe model configuration   )PretrainedConfig)loggingc                   b   ^  \ rS rSrSrSrS/r                    SU 4S jjrSrU =r	$ )JetMoeConfig   aZ  
This is the configuration class to store the configuration of a [`JetMoeModel`]. It is used to instantiate a
JetMoe model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a configuration of the JetMoe-4B.

[jetmoe/jetmoe-8b](https://huggingface.co/jetmoe/jetmoe-8b)

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 32000):
        Vocabulary size of the JetMoe model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`JetMoeModel`]
    hidden_size (`int`, *optional*, defaults to 2048):
        Dimension of the hidden representations.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_key_value_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each key and value in the Transformer encoder.
    kv_channels (`int`, *optional*, defaults to 128):
        Defines the number of channels for the key and value tensors.
    intermediate_size (`int`, *optional*, defaults to 5632):
        Dimension of the MLP representations.
    max_position_embeddings (`int`, *optional*, defaults to 4096):
        The maximum sequence length that this model might ever be used with. JetMoe's attention allows sequence of
        up to 4096 tokens.
    activation_function (`string`, *optional*, defaults to `"silu"`):
        Defines the activation function for MLP experts.
    num_local_experts (`int`, *optional*, defaults to 8):
        Defines the number of experts in the MoE and MoA.
    num_experts_per_tok (`int, *optional*, defaults to 2):
        The number of experts to route per-token and for MoE and MoA.
    output_router_logits (`bool`, *optional*, defaults to `False`):
        Whether or not the router logits should be returned by the model. Enabling this will also
        allow the model to output the auxiliary loss.
    aux_loss_coef (`float`, *optional*, defaults to 0.01):
        The coefficient for the auxiliary loss.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    bos_token_id (`int`, *optional*, defaults to 1):
        The id of the "beginning-of-sequence" token.
    eos_token_id (`int`, *optional*, defaults to 2):
        The id of the "end-of-sequence" token.
    tie_word_embeddings (`bool`, *optional*, defaults to `True`):
        Whether the model's input and output word embeddings should be tied.
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the rms normalization layers.
    initializer_range (`float`, *optional*, defaults to 0.01):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.

```python
>>> from transformers import JetMoeModel, JetMoeConfig

>>> # Initializing a JetMoe 4B style configuration
>>> configuration = JetMoeConfig()

>>> # Initializing a model from the JetMoe 4B style configuration
>>> model = JetMoeModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```jetmoepast_key_valuesc                 J  > X:  a  [        S5      eXl        X l        X0l        XJ-  U l        X@l        XPl        X`l        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        UU l        UU l        Xl        Xl        UU l        UU l        [*        TU ]X  " SXUS.UD6  g )NzG`num_experts_per_tok` must be less than or equal to `num_local_experts`)bos_token_ideos_token_idtie_word_embeddings )
ValueError
vocab_sizehidden_sizenum_hidden_layersnum_attention_headsnum_key_value_headskv_channelsintermediate_sizemax_position_embeddingsactivation_functionnum_local_expertsnum_experts_per_tokoutput_router_logitsaux_loss_coef	use_cacheinitializer_rangeattention_dropoutr   r   
rope_thetarms_norm_epssuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r   r   kwargs	__class__s                         g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/jetmoe/configuration_jetmoe.pyr#   JetMoeConfig.__init__b   s    0 2fgg$&!2#6#L #6 &!2'>$#6 !2#6 $8!*"!2!2(($( 	
%Vi	
ms	
    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r!   r    r   r   )i }  i            i   i   silu      F{Gz?T   r/   Tg     @gư>r0   g        )
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer#   __static_attributes____classcell__)r&   s   @r'   r   r      sb    DL J#4"5  $"" +3
 3
r)   r   N)
r6   configuration_utilsr   utilsr   
get_loggerr2   loggerr   __all__r   r)   r'   <module>r@      s<    ! 3  
		H	%}
# }
@ 
r)   