
    fTh&                     l    S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)z$GraniteMoeShared model configuration   )PretrainedConfig)rope_config_validation)loggingc                   r   ^  \ rS rSrSrSrS/r                            SU 4S jjrSrU =r	$ )GraniteMoeSharedConfig   a   
This is the configuration class to store the configuration of a [`GraniteMoeSharedModel`]. It is used to instantiate an GraniteMoeShared
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [ibm-research/moe-7b-1b-active-shared-experts](https://huggingface.co/ibm-research/moe-7b-1b-active-shared-experts).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 32000):
        Vocabulary size of the GraniteMoeShared model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`GraniteMoeSharedModel`]
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 11008):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 2048):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 1):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 2):
        End of stream token id.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
        these scaling strategies behave:
        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
        experimental feature, subject to breaking API changes in future versions.
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier
    logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits
    residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier
    attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier
    num_local_experts (`int`, *optional*, defaults to 8): total number of experts
    num_experts_per_tok (`int`, *optional*, defaults to 2): number of experts per token
    output_router_logits (`bool`, *optional*, defaults to `False`):
        Whether or not the router logits should be returned by the model. Enabling this will also
        allow the model to output the auxiliary loss.
    router_aux_loss_coef (`float`, *optional*, defaults to 0.001): router auxiliary loss coefficient
    shared_intermediate_size (`int`, *optional*, defaults to 0): intermediate size for shared experts. 0 implies
        no shared experts.

```python
>>> from transformers import GraniteMoeSharedModel, GraniteMoeSharedConfig

>>> # Initializing a GraniteMoeShared granitemoe-3b style configuration
>>> configuration = GraniteMoeSharedConfig()

>>> # Initializing a model from the granitemoe-7b style configuration
>>> model = GraniteMoeSharedModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```granitemoesharedpast_key_valuesc                   > Xl         Xl        X l        X0l        X@l        XPl        Uc  UnX`l        Xpl        Xl        Xl	        Xl
        UU l        UU l        SU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        [2        TU ]h  " SUUUUS.UD6  [7        U 5        g )Nrope)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingposition_embedding_typeattention_biasattention_dropoutembedding_multiplierlogits_scalingresidual_multiplierattention_multipliernum_local_expertsnum_experts_per_tokoutput_router_logitsrouter_aux_loss_coefshared_intermediate_sizesuper__init__r   )selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   kwargs	__class__s                                 {/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/granitemoeshared/configuration_granitemoeshared.pyr,   GraniteMoeSharedConfig.__init__z   s    @ %'>$&!2!2#6  &"5#6 $!2("$('-$,!2$8!,#6 $8!!2#6 $8!$8!(@% 	
%%% 3		

 	
 	t$    )r    r!   r%   r"   r   r   r   r   r#   r   r   r'   r   r   r&   r(   r   r$   r   r   r   r)   r*   r   r   )i }  i   i +      r3   Nsilui   g{Gz?gư>TN      Fg     @NFg              ?r7   r7   r7      r6   FgMbP?    )
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer,   __static_attributes____classcell__)r/   s   @r0   r   r      s|    Vp $J#4"5   $!  ""!";K% K%r2   r   N)r>   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr:   loggerr   __all__r   r2   r0   <module>rI      s?   ( + 3 9  
		H	%g%- g%T $
$r2   