
    fTh~$                     l    S r SSKJr  SSKJr  SSKJr  \R                  " \5      r	 " S S\5      r
S/rg)zGranite model configuration   )PretrainedConfig)rope_config_validation)loggingc                      ^  \ rS rSrSrSrS/rSSSSSSSS.rS/S	/4S
S/S
/4S
/S
/4S.r                        SU 4S jjr	Sr
U =r$ )GraniteConfig   a}  
This is the configuration class to store the configuration of a [`GraniteModel`]. It is used to instantiate an Granite
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Granite-3B.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 32000):
        Vocabulary size of the Granite model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`GraniteModel`]
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 11008):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 32):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 2048):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 1):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 2):
        End of stream token id.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
        these scaling strategies behave:
        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
        experimental feature, subject to breaking API changes in future versions.
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    mlp_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
    embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier
    logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits
    residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier
    attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier

```python
>>> from transformers import GraniteModel, GraniteConfig

>>> # Initializing a Granite granite-3b style configuration
>>> configuration = GraniteConfig()

>>> # Initializing a model from the granite-7b style configuration
>>> model = GraniteModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```granitepast_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                 R  > Xl         Xl        X l        X0l        X@l        XPl        Uc  UnX`l        Xpl        Xl        Xl	        Xl
        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        [(        TU ]T  " SUUUUS.UD6  [-        U 5        g )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutmlp_biasembedding_multiplierlogits_scalingresidual_multiplierattention_multipliersuper__init__r   )selfr   r   r   r   r   r    r!   r   r"   r#   r$   r   r   r   r   r%   r&   r'   r(   r)   r*   r+   r,   r-   kwargs	__class__s                             i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/granite/configuration_granite.pyr/   GraniteConfig.__init__   s    8 %'>$&!2!2#6  &"5#6 $!2("$(,!2 $8!,#6 $8! 	
%%% 3		

 	
 	t$    )r'   r(   r-   r*   r!   r   r"   r   r+   r   r)   r   r   r    r,   r#   r&   r%   r$   r   )i }  i   i +      r6   Nsilui   g{Gz?gư>TN      Fg     @NFg        F      ?r:   r:   r:   )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr/   __static_attributes____classcell__)r2   s   @r3   r   r      s    Pd J#4"5 &/%.%.%."+ )"+ &(9:#%568IJ!"_$56   $!  3?% ?%r5   r   N)r?   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr;   loggerr   __all__r   r5   r3   <module>rL      s?   ( " 3 9  
		H	%d%$ d%N 
r5   