
    fThn                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zGLPN model configuration   )PretrainedConfig)loggingc                   t   ^  \ rS rSrSrSrSS/ SQ/ SQ/ SQ/ S	Q/ S
Q/ SQ/ SQSSSSSSSSS4U 4S jjrSrU =r$ )
GLPNConfig   ac  
This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GLPN
[vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    num_encoder_blocks (`int`, *optional*, defaults to 4):
        The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
    depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
        The number of layers in each encoder block.
    sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
        Sequence reduction ratios in each encoder block.
    hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
        Dimension of each of the encoder blocks.
    patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
        Patch size before each encoder block.
    strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
        Stride before each encoder block.
    num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
        Number of attention heads for each attention layer in each block of the Transformer encoder.
    mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
        Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
        encoder blocks.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    drop_path_rate (`float`, *optional*, defaults to 0.1):
        The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
    layer_norm_eps (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the layer normalization layers.
    decoder_hidden_size (`int`, *optional*, defaults to 64):
        The dimension of the decoder.
    max_depth (`int`, *optional*, defaults to 10):
        The maximum depth of the decoder.
    head_in_index (`int`, *optional*, defaults to -1):
        The index of the features to use in the head.

Example:

```python
>>> from transformers import GLPNModel, GLPNConfig

>>> # Initializing a GLPN vinvino02/glpn-kitti style configuration
>>> configuration = GLPNConfig()

>>> # Initializing a model from the vinvino02/glpn-kitti style configuration
>>> model = GLPNModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```glpnr      )   r
   r
   r
   )   r	   r
      )    @         )   r   r   r   )r	   r
   r
   r
   )r   r
      r   )r	   r	   r	   r	   gelug        g{Gz?g?gư>r   
   c                   > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        g )N )super__init__num_channelsnum_encoder_blocksdepths	sr_ratioshidden_sizespatch_sizesstrides
mlp_ratiosnum_attention_heads
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangedrop_path_ratelayer_norm_epsdecoder_hidden_size	max_depthhead_in_index)selfr   r   r   r   r   r   r    r"   r!   r#   r$   r%   r&   r'   r(   r)   r*   r+   kwargs	__class__s                       c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/glpn/configuration_glpn.pyr   GLPNConfig.__init__[   s    , 	"6"("4"(&$#6 $#6 ,H)!2,,#6 "*    )r%   r)   r   r'   r+   r#   r$   r   r&   r(   r*   r!   r"   r   r   r   r   r    )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r.   s   @r/   r   r      sR    >@ J ' (%(')+ )+r1   r   N)
r6   configuration_utilsr   utilsr   
get_loggerr2   loggerr   __all__r   r1   r/   <module>r?      s;     3  
		H	%l+! l+^ .r1   