
    fTh                     ,    S SK Jr   " S S\5      rS/rg)   )PretrainedConfigc                      ^  \ rS rSrSrSrS/rSSSSSSS	.rS
/S/4SS/S/4S/S/4S.rSSSSSSSSSSSSSSSSS/ S QS!S4U 4S" jjr	S#r
U =r$ )$
Glm4Config   a)  
This is the configuration class to store the configuration of a [`Glm4Model`]. It is used to instantiate an Glm4
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Glm4-4-9b-chat.
e.g. [THUDM/glm-4-0414-9b-chat-chat](https://huggingface.co/THUDM/glm-4-0414-9b-chat-chat)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
    vocab_size (`int`, *optional*, defaults to 151552):
        Vocabulary size of the Glm4 model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`Glm4Model`]
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 13696):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 40):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*, defaults to 2):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    partial_rotary_factor (`float`, *optional*, defaults to 0.5): The factor of the partial rotary position.
    head_dim (`int`, *optional*, defaults to 128):
        The attention head dimension.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The legacy activation function. It is overwritten by the `hidden_activation`.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 131072):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1.5625e-07):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    pad_token_id (`int`, *optional*, defaults to 151329):
        Padding token id.
    eos_token_id (`int` | `list`, *optional*, defaults to `[151329, 151336, 151338]`):
        End of stream token id.
    bos_token_id (`int`, *optional*):
        Beginning of stream token id.
    attention_bias (`bool`, defaults to `False`, *optional*, defaults to `True`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
```python
>>> from transformers import Glm4Model, Glm4Config
>>> # Initializing a Glm4 glm4-4-9b-chat style configuration
>>> configuration = Glm4Config()
>>> # Initializing a model from the glm4-4-9b-chat style configuration
>>> model = Glm4Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```glm4past_key_valuescolwiserowwisecolwise_reprowwise_rep)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormi P i   i5  (          g      ?   silug        i   g{Gz?gh㈵>TFg     @!O )r   i(O i*O Nc                    > Xl         Xl        X l        X0l        X@l        XPl        Xpl        Xl        X`l        Xl	        Xl
        Xl        Xl        UU l        UU l        Xl        [         TU ]D  " SUUUUS.UD6  g )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headspartial_rotary_factorhead_dimnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropoutsuper__init__)selfr    r"   r#   r$   r%   r(   r&   r'   r)   r/   r!   r*   r+   r,   r   r-   r   r   r   r.   kwargs	__class__s                         c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/glm4/configuration_glm4.pyr1   Glm4Config.__init__f   s    0 %'>$&!2!2#6 %:" #6 $!2("$,!2 	
%%% 3		

 	
    )r.   r/   r'   r)   r"   r*   r#   r!   r%   r$   r(   r&   r+   r-   r,   r    )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr1   __static_attributes____classcell__)r4   s   @r5   r   r      s    ?B J#4"5%.%.%.%.%2"/ &(9:#%568IJ!"_$56 ! &"!-+/
 /
r7   r   N)configuration_utilsr   r   __all__r   r7   r5   <module>rE      s#   " 4A
! A
H .r7   