
    fTh#                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
R                  " \5      r " S S	\5      r " S
 S\5      rS	S/rg)zELECTRA model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   ^   ^  \ rS rSrSrSr                     SU 4S jjrSrU =r$ )ElectraConfig   ag  
This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is
used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA
[google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
    embedding_size (`int`, *optional*, defaults to 128):
        Dimensionality of the encoder layers and the pooler layer.
    hidden_size (`int`, *optional*, defaults to 256):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 4):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 1024):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    summary_type (`str`, *optional*, defaults to `"first"`):
        Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

        Has to be one of the following options:

            - `"last"`: Take the last token hidden state (like XLNet).
            - `"first"`: Take the first token hidden state (like BERT).
            - `"mean"`: Take the mean of all tokens hidden states.
            - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
            - `"attn"`: Not implemented now, use multi-head attention.
    summary_use_proj (`bool`, *optional*, defaults to `True`):
        Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

        Whether or not to add a projection after the vector extraction.
    summary_activation (`str`, *optional*):
        Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

        Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation.
    summary_last_dropout (`float`, *optional*, defaults to 0.0):
        Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

        The dropout ratio to be used after the projection and activation.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
        positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
        [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
        For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
        with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    classifier_dropout (`float`, *optional*):
        The dropout ratio for the classification head.

Examples:

```python
>>> from transformers import ElectraConfig, ElectraModel

>>> # Initializing a ELECTRA electra-base-uncased style configuration
>>> configuration = ElectraConfig()

>>> # Initializing a model (with random weights) from the electra-base-uncased style configuration
>>> model = ElectraModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```electrac                 $  > [         TU ]  " SSU0UD6  Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        g )Npad_token_id )super__init__
vocab_sizeembedding_sizehidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epssummary_typesummary_use_projsummary_activationsummary_last_dropoutposition_embedding_type	use_cacheclassifier_dropout)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r   r#   r$   r%   kwargs	__class__s                          i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/electra/configuration_electra.pyr   ElectraConfig.__init__y   s    2 	=l=f=$,&!2#6 !2$#6 ,H)'>$.!2,( 0"4$8!'>$""4    )r   r%   r   r   r   r   r   r   r   r   r   r   r#   r!   r"   r   r    r   r$   r   )i:w              i   gelu皙?r1   i      g{Gz?g-q=firstTr0   r1   r   absoluteTN)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r(   s   @r)   r
   r
      s\    Wr J %( #!  *-/5 /5r+   r
   c                   @    \ rS rSr\S\\\\\4   4   4S j5       rSr	g)ElectraOnnxConfig   returnc                 b    U R                   S:X  a  SSSS.nOSSS.n[        SU4SU4S	U4/5      $ )
Nzmultiple-choicebatchchoicesequence)r      r2   )r   rE   	input_idsattention_masktoken_type_ids)taskr   )r&   dynamic_axiss     r)   inputsElectraOnnxConfig.inputs   sO    99))&8
CL&:6Ll+!<0!<0
 	
r+   r   N)
r5   r6   r7   r8   propertyr   strintrK   r;   r   r+   r)   r>   r>      s.    
WS#X%6 67 
 
r+   r>   N)r9   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr5   loggerr
   r>   __all__r   r+   r)   <module>rX      sT     " #  3   
		H	%K5$ K5\

 
  /
0r+   