
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zDPR model configuration   )PretrainedConfig)loggingc                   Z   ^  \ rS rSrSrSr               SS\4U 4S jjjrSrU =r	$ )	DPRConfig   a  
[`DPRConfig`] is the configuration class to store the configuration of a *DPRModel*.

This is the configuration class to store the configuration of a [`DPRContextEncoder`], [`DPRQuestionEncoder`], or a
[`DPRReader`]. It is used to instantiate the components of the DPR model according to the specified arguments,
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar
configuration to that of the DPRContextEncoder
[facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base)
architecture.

This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs.

Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the DPR model. Defines the different tokens that can be represented by the *inputs_ids*
        passed to the forward method of [`BertModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the *token_type_ids* passed into [`BertModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    pad_token_id (`int`, *optional*, defaults to 0):
        Padding token id.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
        positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
        [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
        For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
        with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
    projection_dim (`int`, *optional*, defaults to 0):
        Dimension of the projection for the context and question encoders. If it is set to zero (default), then no
        projection is done.

Example:

```python
>>> from transformers import DPRConfig, DPRContextEncoder

>>> # Initializing a DPR facebook/dpr-ctx_encoder-single-nq-base style configuration
>>> configuration = DPRConfig()

>>> # Initializing a model (with random weights) from the facebook/dpr-ctx_encoder-single-nq-base style configuration
>>> model = DPRContextEncoder(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```dprprojection_dimc                    > [         TU ]  " SSU0UD6  Xl        X l        X0l        X@l        X`l        XPl        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        g )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsr	   position_embedding_type)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r	   kwargs	__class__s                    a/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/dpr/configuration_dpr.pyr   DPRConfig.__init__^   sl    & 	=l=f=$&!2#6 $!2#6 ,H)'>$.!2,,'>$    )r   r   r   r   r   r   r   r   r   r   r   r	   r   r   )i:w  i      r"   i   gelu皙?r$   i      g{Gz?g-q=    absoluter&   )
__name__
__module____qualname____firstlineno____doc__
model_typeintr   __static_attributes____classcell__)r   s   @r   r   r      sT    AF J %( # *!"?  !"? "?r!   r   N)
r,   configuration_utilsr   utilsr   
get_loggerr(   loggerr   __all__r   r!   r   <module>r6      s;     3  
		H	%h?  h?V -r!   