
    fTh                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  \
R                  " \5      r " S S	\5      r " S
 S\5      rS	S/rg)zDistilBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   \   ^  \ rS rSrSrSrSSSS.r              S
U 4S jjrS	rU =r	$ )DistilBertConfig   a]  
This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It
is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT
[distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 30522):
        Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by
        the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`].
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`):
        Whether to use sinusoidal positional embeddings.
    n_layers (`int`, *optional*, defaults to 6):
        Number of hidden layers in the Transformer encoder.
    n_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    dim (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    hidden_dim (`int`, *optional*, defaults to 3072):
        The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    dropout (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    qa_dropout (`float`, *optional*, defaults to 0.1):
        The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`].
    seq_classif_dropout (`float`, *optional*, defaults to 0.2):
        The dropout probabilities used in the sequence classification and the multiple choice model
        [`DistilBertForSequenceClassification`].

Examples:

```python
>>> from transformers import DistilBertConfig, DistilBertModel

>>> # Initializing a DistilBERT configuration
>>> configuration = DistilBertConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = DistilBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```
distilbertdimn_headsn_layers)hidden_sizenum_attention_headsnum_hidden_layersc                    > Xl         X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl        Xl	        Xl
        Xl        Xl        [        TU ]8  " S0 UDSU0D6  g )Npad_token_id )
vocab_sizemax_position_embeddingssinusoidal_pos_embdsr   r   r   
hidden_dimdropoutattention_dropout
activationinitializer_range
qa_dropoutseq_classif_dropoutsuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                   o/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/distilbert/configuration_distilbert.pyr!   DistilBertConfig.__init__\   s`    $ %'>$$8! $!2$!2$#6 =6==    )r   r   r   r   r   r   r   r   r   r   r   r   r   )i:w  i   F      i   i   皙?r*   gelug{Gz?r*   g?r   )
__name__
__module____qualname____firstlineno____doc__
model_typeattribute_mapr!   __static_attributes____classcell__)r$   s   @r%   r
   r
      sV    6p J('M  #"> >r'   r
   c                   @    \ rS rSr\S\\\\\4   4   4S j5       rSr	g)DistilBertOnnxConfig~   returnc                 \    U R                   S:X  a  SSSS.nOSSS.n[        SU4SU4/5      $ )	Nzmultiple-choicebatchchoicesequence)r         )r   r=   	input_idsattention_mask)taskr   )r"   dynamic_axiss     r%   inputsDistilBertOnnxConfig.inputs   sG    99))&8
CL&:6Ll+!<0
 	
r'   r   N)
r,   r-   r.   r/   propertyr   strintrC   r3   r   r'   r%   r6   r6   ~   s.    

WS#X%6 67 

 

r'   r6   N)r0   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr,   loggerr
   r6   __all__r   r'   r%   <module>rP      sT    % #  3   
		H	%_>' _>D
: 
 5
6r'   