
    fThZ                          S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  SSKJr  SS	KJrJr  \R                   " \5      r " S
 S\\5      r " S S\
5      rSS/rg)zDINOv2 model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   ^   ^  \ rS rSrSrSr                     SU 4S jjrSrU =r$ )Dinov2Config   a  
This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an
Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Dinov2
[google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    mlp_ratio (`int`, *optional*, defaults to 4):
        Ratio of the hidden size of the MLPs relative to the `hidden_size`.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the layer normalization layers.
    image_size (`int`, *optional*, defaults to 224):
        The size (resolution) of each image.
    patch_size (`int`, *optional*, defaults to 14):
        The size (resolution) of each patch.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    qkv_bias (`bool`, *optional*, defaults to `True`):
        Whether to add a bias to the queries, keys and values.
    layerscale_value (`float`, *optional*, defaults to 1.0):
       Initial value to use for layer scale.
    drop_path_rate (`float`, *optional*, defaults to 0.0):
        Stochastic depth rate per sample (when applied in the main path of residual layers).
    use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
        Whether to use the SwiGLU feedforward neural network.
    out_features (`List[str]`, *optional*):
        If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
        (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
        corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.
    out_indices (`List[int]`, *optional*):
        If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
        many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
        If unset and `out_features` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.
    apply_layernorm (`bool`, *optional*, defaults to `True`):
        Whether to apply layer normalization to the feature maps in case the model is used as backbone.
    reshape_hidden_states (`bool`, *optional*, defaults to `True`):
        Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
        case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
        seq_len, hidden_size)`.
    use_mask_token (`bool`, *optional*, defaults to `True`):
        Whether to use mask_token in embeddings.

Example:

```python
>>> from transformers import Dinov2Config, Dinov2Model

>>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration
>>> configuration = Dinov2Config()

>>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration
>>> model = Dinov2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```dinov2c                   > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        Xl        UU l        S/[%        SUS-   5       Vs/ s H  nSU 3PM
     sn-   U l        [)        UUU R&                  S9u  U l        U l        UU l        UU l        UU l        g s  snf )Nstem   stage)out_featuresout_indicesstage_names )super__init__hidden_sizenum_hidden_layersnum_attention_heads	mlp_ratio
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biaslayerscale_valuedrop_path_rateuse_swiglu_ffnranger   r   _out_features_out_indicesapply_layernormreshape_hidden_statesuse_mask_token)selfr   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r   r   r.   r/   r0   kwargsidx	__class__s                           g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/dinov2/configuration_dinov2.pyr   Dinov2Config.__init__o   s    2 	"6"&!2#6 "$#6 ,H)!2,$$(  0,,"8aIZ]^I^@_&`@_se}@_&``0Z%;DL\L\1
-D-  /%:", 'as   C)r,   r-   r.   r!   r)   r   r    r   r$   r"   r#   r(   r   r   r&   r   r%   r'   r/   r   r0   r*   )i      r7      gelu        r:   g{Gz?gư>      r   Tg      ?r:   FNNTTT)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r4   s   @r5   r   r      s\    KZ J %("-1- 1-    r   c                   |    \ rS rSr\R
                  " S5      r\S\\	\\
\	4   4   4S j5       r\S\4S j5       rSrg)Dinov2OnnxConfig   z1.11returnc                 (    [        SSSSSS.4/5      $ )Npixel_valuesbatchr&   heightwidth)r   r      r   r   r1   s    r5   inputsDinov2OnnxConfig.inputs   s&    WHQX!YZ
 	
rE   c                     g)Ng-C6?r   rP   s    r5   atol_for_validation$Dinov2OnnxConfig.atol_for_validation   s    rE   r   N)r=   r>   r?   r@   r   parsetorch_onnx_minimum_versionpropertyr   strintrQ   floatrT   rC   r   rE   r5   rG   rG      sX    !(v!6
WS#X%6 67 
 
 U  rE   rG   N)rA   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   utils.backbone_utilsr   r   
get_loggerr=   loggerr   rG   __all__r   rE   r5   <module>rf      s]    ! #   3   c 
		H	%A-&(8 A-Hz   -
.rE   