
    fTh)                     <    S r SSKJr  SSKJr   " S S\5      rS/rg)zDiffLlama model configuration   )PretrainedConfig)rope_config_validationc                   d   ^  \ rS rSrSrSrS/r                     SU 4S jjrSrU =r	$ )DiffLlamaConfig   a^  
This is the configuration class to store the configuration of a [`DiffLlamaModel`]. It is used to instantiate an DiffLlama
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults
will yield a similar configuration to that of the [kajuma/DiffLlama-0.3B-handcut](https://huggingface.co/kajuma/DiffLlama-0.3B-handcut).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 32000):
        Vocabulary size of the DiffLlama model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`DiffLlamaModel`]
    hidden_size (`int`, *optional*, defaults to 2048):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 8192):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 16):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 32):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 2048):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 1):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 2):
        End of stream token id.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 10000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'diffllama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'diffllama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'diffllama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'diffllama3'. Scaling factor applied to high frequency components of the RoPE
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    lambda_std_dev (`float`, *optional*, defaults to 0.1):
        The standard deviation for initialization of parameter lambda in attention layer.
    head_dim (`int`, *optional*):
        The attention head dimension. If None, it will default to hidden_size // num_heads

```python
>>> from transformers import DiffLlamaModel, DiffLlamaConfig

>>> # Initializing a DiffLlama diffllama-7b style configuration
>>> configuration = DiffLlamaConfig()

>>> # Initializing a model from the diffllama-7b style configuration
>>> model = DiffLlamaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```	diffllamapast_key_valuesc                   > Xl         Xl        X l        X0l        X@l        XPl        Uc  UnX`l        Xpl        Xl        Xl	        Xl
        UU l        UU l        UU l        UU l        UU l        Ub  UOU R                  U R
                  -  U l        U R                  b,  SU R                  ;   a  U R                  S   U R                  S'   [#        U 5        [$        TU ]L  " SUUUUS.UD6  g )Ntype	rope_type)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutlambda_std_devhead_dimr   super__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   kwargs	__class__s                          m/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/diffllama/configuration_diffllama.pyr$   DiffLlamaConfig.__init__   s    2 %'>$&!2!2#6  &"5#6 $!2("$(,!2,$,$8d>N>NRVRjRj>j (Vt7H7H-H-1->->v-FDk*t$ 	
%%% 3		

 	
    )r   r    r"   r   r   r   r   r!   r   r   r   r   r   r   r   r   r   )i }     i           Nsilur+   g{Gz?gh㈵>TN      Fg     @NFg        g?N)
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer$   __static_attributes____classcell__)r'   s   @r(   r   r      se    kZ J#4"5   $!-;
 ;
r*   r   N)r5   configuration_utilsr   modeling_rope_utilsr   r   __all__r   r*   r(   <module>r=      s*   $ $ 3 9l
& l
^ 
r*   