
    fThn5                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  SSKJr  SS	KJr  S
SKJr  \R"                  " \5      r " S S\5      r " S S\
5      rSS/rg)zDETR model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging) verify_backbone_config_arguments   )CONFIG_MAPPINGc                      ^  \ rS rSrSrSrS/rSSS.r                                  SU 4S jjr\	S	\
4S
 j5       r\	S	\
4S j5       r\S\4S j5       rSrU =r$ )
DetrConfig    a  
This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DETR
[facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    use_timm_backbone (`bool`, *optional*, defaults to `True`):
        Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
        API.
    backbone_config (`PretrainedConfig` or `dict`, *optional*):
        The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
        case it will default to `ResNetConfig()`.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    num_queries (`int`, *optional*, defaults to 100):
        Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can
        detect in a single image. For COCO, we recommend 100 queries.
    d_model (`int`, *optional*, defaults to 256):
        This parameter is a general dimension parameter, defining dimensions for components such as the encoder layer and projection parameters in the decoder layer, among others.
    encoder_layers (`int`, *optional*, defaults to 6):
        Number of encoder layers.
    decoder_layers (`int`, *optional*, defaults to 6):
        Number of decoder layers.
    encoder_attention_heads (`int`, *optional*, defaults to 8):
        Number of attention heads for each attention layer in the Transformer encoder.
    decoder_attention_heads (`int`, *optional*, defaults to 8):
        Number of attention heads for each attention layer in the Transformer decoder.
    decoder_ffn_dim (`int`, *optional*, defaults to 2048):
        Dimension of the "intermediate" (often named feed-forward) layer in decoder.
    encoder_ffn_dim (`int`, *optional*, defaults to 2048):
        Dimension of the "intermediate" (often named feed-forward) layer in decoder.
    activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    dropout (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    activation_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for activations inside the fully connected layer.
    init_std (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    init_xavier_std (`float`, *optional*, defaults to 1):
        The scaling factor used for the Xavier initialization gain in the HM Attention map module.
    encoder_layerdrop (`float`, *optional*, defaults to 0.0):
        The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
        for more details.
    decoder_layerdrop (`float`, *optional*, defaults to 0.0):
        The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
        for more details.
    auxiliary_loss (`bool`, *optional*, defaults to `False`):
        Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
    position_embedding_type (`str`, *optional*, defaults to `"sine"`):
        Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
    backbone (`str`, *optional*, defaults to `"resnet50"`):
        Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
        will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
        is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
    use_pretrained_backbone (`bool`, *optional*, `True`):
        Whether to use pretrained weights for the backbone.
    backbone_kwargs (`dict`, *optional*):
        Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
        e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
    dilation (`bool`, *optional*, defaults to `False`):
        Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
        `use_timm_backbone` = `True`.
    class_cost (`float`, *optional*, defaults to 1):
        Relative weight of the classification error in the Hungarian matching cost.
    bbox_cost (`float`, *optional*, defaults to 5):
        Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
    giou_cost (`float`, *optional*, defaults to 2):
        Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
    mask_loss_coefficient (`float`, *optional*, defaults to 1):
        Relative weight of the Focal loss in the panoptic segmentation loss.
    dice_loss_coefficient (`float`, *optional*, defaults to 1):
        Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
    bbox_loss_coefficient (`float`, *optional*, defaults to 5):
        Relative weight of the L1 bounding box loss in the object detection loss.
    giou_loss_coefficient (`float`, *optional*, defaults to 2):
        Relative weight of the generalized IoU loss in the object detection loss.
    eos_coefficient (`float`, *optional*, defaults to 0.1):
        Relative classification weight of the 'no-object' class in the object detection loss.

Examples:

```python
>>> from transformers import DetrConfig, DetrModel

>>> # Initializing a DETR facebook/detr-resnet-50 style configuration
>>> configuration = DetrConfig()

>>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration
>>> model = DetrModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```detrpast_key_valuesd_modelencoder_attention_heads)hidden_sizenum_attention_headsc#                 <  > U(       a  Uc  0 nU(       a  SUS'   / SQUS'   UUS'   OxU(       dq  US;   ak  Uc$  [         R                  S5        [        S   " S	/S
9nO@[        U[        5      (       a+  UR                  S5      n$[        U$   n%U%R                  U5      nS nS n[        UUUUUS9  Xl        X l	        X0l
        X@l        Xl        X`l        XPl        Xpl        Xl        Xl        Xl        UU l        UU l        UU l        Xl        UU l        UU l        Xl        Xl        XPl        UU l        UU l        UU l        UU l        UU l         UU l!        UU l"        UU l#        UU l$        UU l%        UU l&        U U l'        U!U l(        U"U l)        [T        T&U ]  " SSU0U#D6  g )N   output_stride)   r   r      out_indicesin_chans)Nresnet50zX`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.resnetstage4)out_features
model_type)use_timm_backboneuse_pretrained_backbonebackbonebackbone_configbackbone_kwargsis_encoder_decoder ),loggerinfor   
isinstancedictget	from_dictr   r#   r&   num_channelsnum_queriesr   encoder_ffn_dimencoder_layersr   decoder_ffn_dimdecoder_layersdecoder_attention_headsdropoutattention_dropoutactivation_dropoutactivation_functioninit_stdinit_xavier_stdencoder_layerdropdecoder_layerdropnum_hidden_layersauxiliary_lossposition_embedding_typer%   r$   r'   dilation
class_cost	bbox_cost	giou_costmask_loss_coefficientdice_loss_coefficientbbox_loss_coefficientgiou_loss_coefficienteos_coefficientsuper__init__)'selfr#   r&   r0   r1   r3   r2   r   r5   r4   r6   r=   r>   r(   r:   r   r7   r8   r9   r;   r<   r@   rA   r%   r$   r'   rB   rC   rD   rE   rF   rG   rH   rI   rJ   kwargsbackbone_model_typeconfig_class	__class__s'                                         c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/detr/configuration_detr.pyrL   DetrConfig.__init__   s   P !8 O350-9OM**6OJ'"x3E'E&vw"0":
"SOT22&5&9&9,&G#-.AB"."8"8"IHH(/$;++	
 "3.(&.,'>$.,'>$!2"4#6  .!2!2!/,'>$ '>$. $""%:"%:"%:"%:".I,>I&I    returnc                     U R                   $ N)r   rM   s    rR   r   DetrConfig.num_attention_heads   s    +++rT   c                     U R                   $ rW   )r   rX   s    rR   r   DetrConfig.hidden_size   s    ||rT   r&   c                     U " SSU0UD6$ )zInstantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration.

Args:
    backbone_config ([`PretrainedConfig`]):
        The backbone configuration.
Returns:
    [`DetrConfig`]: An instance of a configuration object
r&   r)   r)   )clsr&   rN   s      rR   from_backbone_configDetrConfig.from_backbone_config   s     =?=f==rT   )"r9   r:   r8   r@   r%   r&   r'   rD   rH   rC   r   r6   r4   r>   r5   rG   rB   r7   r   r2   r=   r3   rJ   rE   rI   r;   r<   rF   r0   r?   r1   rA   r$   r#   )"TNr   d            ra   rb   rc           rd   Trelu   皙?rd   rd   g{Gz?g      ?Fsiner   TNFr      r   r   r   ri   r   rg   )__name__
__module____qualname____firstlineno____doc__r"   keys_to_ignore_at_inferenceattribute_maprL   propertyintr   r   classmethodr   r^   __static_attributes____classcell__)rQ   s   @rR   r   r       s    dL J#4"5 8M  ! !" & $GgJR ,S , , S   	>3C 	> 	>rT   r   c                       \ rS rSr\R
                  " S5      r\S\\	\\
\	4   4   4S j5       r\S\4S j5       r\S\
4S j5       rSrg)	DetrOnnxConfigi  z1.11rU   c                 2    [        SSSSSS.4SSS04/5      $ )	Npixel_valuesbatchr0   heightwidth)r   r   r   r   
pixel_maskr   r   rX   s    rR   inputsDetrOnnxConfig.inputs  s2    WHQX!YZ7|,
 	
rT   c                     g)Ngh㈵>r)   rX   s    rR   atol_for_validation"DetrOnnxConfig.atol_for_validation  s    rT   c                     g)N   r)   rX   s    rR   default_onnx_opset!DetrOnnxConfig.default_onnx_opset  s    rT   r)   N)rj   rk   rl   rm   r   parsetorch_onnx_minimum_versionrq   r   strrr   r~   floatr   r   rt   r)   rT   rR   rw   rw     ss    !(v!6
WS#X%6 67 
 
 U   C  rT   rw   N)rn   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   utils.backbone_utilsr   autor   
get_loggerrj   r*   r   rw   __all__r)   rT   rR   <module>r      s]     #   3   D ! 
		H	%i>! i>XZ * )
*rT   