
    fTh%#                         S r SSKJr  SSKJrJrJrJrJr  SSK	J
r
  SSKJr  SSKJr  \(       a
  SSKJrJrJr  \R&                  " \5      r " S	 S
\
5      r " S S\5      rS
S/rg)zDeBERTa model configuration    )OrderedDict)TYPE_CHECKINGAnyMappingOptionalUnion   )PretrainedConfig)
OnnxConfig)logging)FeatureExtractionMixinPreTrainedTokenizerBase
TensorTypec                   \   ^  \ rS rSrSrSr                    SU 4S jjrSrU =r$ )DebertaConfig    aT  
This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is
used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa
[microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Arguments:
    vocab_size (`int`, *optional*, defaults to 50265):
        Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
        are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 0):
        The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    relative_attention (`bool`, *optional*, defaults to `False`):
        Whether use relative position encoding.
    max_relative_positions (`int`, *optional*, defaults to 1):
        The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
        as `max_position_embeddings`.
    pad_token_id (`int`, *optional*, defaults to 0):
        The value used to pad input_ids.
    position_biased_input (`bool`, *optional*, defaults to `True`):
        Whether add absolute position embedding to content embedding.
    pos_att_type (`List[str]`, *optional*):
        The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
        `["p2c", "c2p"]`.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    legacy (`bool`, *optional*, defaults to `True`):
        Whether or not the model should use the legacy `LegacyDebertaOnlyMLMHead`, which does not work properly
        for mask infilling tasks.

Example:

```python
>>> from transformers import DebertaConfig, DebertaModel

>>> # Initializing a DeBERTa microsoft/deberta-base style configuration
>>> configuration = DebertaConfig()

>>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration
>>> model = DebertaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```debertac                   > [         TU ]  " S0 UD6  X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl	        Xl
        Xl        Xl        Xl        Xl        UU l        [!        U["        5      (       a=  UR%                  5       R'                  S5       Vs/ s H  nUR)                  5       PM     nnUU l        Xl        Xl        UR1                  SU5      U l        UU l        UU l        UU l        g s  snf )N|pooler_hidden_size )super__init__hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangerelative_attentionmax_relative_positionspad_token_idposition_biased_input
isinstancestrlowersplitstrippos_att_type
vocab_sizelayer_norm_epsgetr   pooler_dropoutpooler_hidden_actlegacy)selfr.   r   r   r   r   r   r   r    r!   r"   r#   r/   r$   r%   r&   r'   r-   r1   r2   r3   kwargsx	__class__s                          i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/deberta/configuration_deberta.pyr   DebertaConfig.__init__j   s    0 	"6"&!2#6 !2$#6 ,H)'>$.!2"4&<#(%:" lC((/;/A/A/C/I/I#/NO/N!AGGI/NLO($,"(**-A;"O,!2 Ps   C9)r    r   r   r   r#   r   r/   r3   r!   r%   r   r   r&   r1   r2   r   r-   r'   r$   r"   r.   )iY  i      r:   i   gelu皙?r<   i   r   g{Gz?gHz>Fr   TNr   r;   T)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__r7   s   @r8   r   r       sY    EN J %( # !" +4 4    r   c                      ^  \ rS rSr\S\\\\\4   4   4S j5       r\S\4S j5       r	         SS\
S   S\S\S	\S
\S\S   S\S\S\SSS\\\4   4U 4S jjjrSrU =r$ )DebertaOnnxConfig   returnc                     U R                   S:X  a  SSSS.nOSSS.nU R                  R                  S:  a  [        SU4S	U4S
U4/5      $ [        SU4S	U4/5      $ )Nzmultiple-choicebatchchoicesequence)r         )r   rP   r   	input_idsattention_masktoken_type_ids)task_configr"   r   )r4   dynamic_axiss     r8   inputsDebertaOnnxConfig.inputs   s~    99))&8
CL&:6L<<''!+|,/?.NQacoPpq  l ;>NP\=]^__rG   c                     g)Nr:   r   )r4   s    r8   default_onnx_opset$DebertaOnnxConfig.default_onnx_opset   s    rG   preprocessor)r   r   
batch_size
seq_lengthnum_choicesis_pair	frameworkr   num_channelsimage_widthimage_height	tokenizerr   c                 h   > [         TU ]  XS9nU R                  R                  S:X  a	  SU;   a  US	 U$ )N)r]   rb   r   rT   )r   generate_dummy_inputsrV   r"   )r4   r]   r^   r_   r`   ra   rb   rc   rd   re   rf   dummy_inputsr7   s               r8   rh   'DebertaOnnxConfig.generate_dummy_inputs   s@     w4,4d<<''1,1A\1Q-.rG   r   )	r=   r=   r=   FNr	   (   rk   N)r>   r?   r@   rA   propertyr   r)   intrX   r[   r   boolr   r   rh   rD   rE   rF   s   @r8   rI   rI      s    
`WS#X%6 67 
` 
` C   ,0/3OP  	
   L)    - 
c	 rG   rI   N)rB   collectionsr   typingr   r   r   r   r   configuration_utilsr
   onnxr   utilsr    r   r   r   
get_loggerr>   loggerr   rI   __all__r   rG   r8   <module>rx      sc    " # ? ? 3   OO 
		H	%~$ ~D"
 "J /
0rG   