
    fTh'                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  SSKJr  SS	KJrJr  \R                   " \5      r " S
 S\\5      r " S S\
5      rSS/rg)zConvNeXT model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   N   ^  \ rS rSrSrSr             SU 4S jjrSrU =r$ )ConvNextConfig   a.  
This is the configuration class to store the configuration of a [`ConvNextModel`]. It is used to instantiate an
ConvNeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the ConvNeXT
[facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    patch_size (`int`, *optional*, defaults to 4):
        Patch size to use in the patch embedding layer.
    num_stages (`int`, *optional*, defaults to 4):
        The number of stages in the model.
    hidden_sizes (`List[int]`, *optional*, defaults to [96, 192, 384, 768]):
        Dimensionality (hidden size) at each stage.
    depths (`List[int]`, *optional*, defaults to [3, 3, 9, 3]):
        Depth (number of blocks) for each stage.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
        `"selu"` and `"gelu_new"` are supported.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    layer_scale_init_value (`float`, *optional*, defaults to 1e-6):
        The initial value for the layer scale.
    drop_path_rate (`float`, *optional*, defaults to 0.0):
        The drop rate for stochastic depth.
    out_features (`List[str]`, *optional*):
        If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
        (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
        corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.
    out_indices (`List[int]`, *optional*):
        If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
        many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
        If unset and `out_features` is unset, will default to the last stage. Must be in the
        same order as defined in the `stage_names` attribute.

Example:
```python
>>> from transformers import ConvNextConfig, ConvNextModel

>>> # Initializing a ConvNext convnext-tiny-224 style configuration
>>> configuration = ConvNextConfig()

>>> # Initializing a model (with random weights) from the convnext-tiny-224 style configuration
>>> model = ConvNextModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```convnextc                   > [         TU ]  " S0 UD6  Xl        X l        X0l        Uc  / SQOUU l        Uc  / SQOUU l        X`l        Xpl        Xl	        Xl
        Xl        Xl        S/[        S[        U R                  5      S-   5       Vs/ s H  nSU 3PM
     sn-   U l        [!        XU R                  S9u  U l        U l        g s  snf )N)`      i  i   )r   r   	   r   stem   stage)out_featuresout_indicesstage_names )super__init__num_channels
patch_size
num_stageshidden_sizesdepths
hidden_actinitializer_rangelayer_norm_epslayer_scale_init_valuedrop_path_rate
image_sizerangelenr   r   _out_features_out_indices)selfr   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r   r   kwargsidx	__class__s                   k/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/convnext/configuration_convnext.pyr   ConvNextConfig.__init__Z   s    " 	"6"($$3?3G/\&,nl&$!2,&<#,$"8aT[[IY\]I]@^&_@^se}@^&__0Z%DL\L\1
-D- '`s   
C)r+   r,   r"   r'   r#   r!   r(   r$   r%   r&   r   r    r   r   )r      r3   NNgelug{Gz?g-q=gư>g           NN)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r0   s   @r1   r   r      sC    6p J #!
 !
    r   c                   |    \ rS rSr\R
                  " S5      r\S\\	\\
\	4   4   4S j5       r\S\4S j5       rSrg)ConvNextOnnxConfig~   z1.11returnc                 (    [        SSSSSS.4/5      $ )Npixel_valuesbatchr   heightwidth)r   r      r   r   r-   s    r1   inputsConvNextOnnxConfig.inputs   s&    WHQX!YZ
 	
r>   c                     g)Ngh㈵>r   rI   s    r1   atol_for_validation&ConvNextOnnxConfig.atol_for_validation   s    r>   r   N)r6   r7   r8   r9   r   parsetorch_onnx_minimum_versionpropertyr   strintrJ   floatrM   r<   r   r>   r1   r@   r@   ~   sX    !(v!6
WS#X%6 67 
 
 U  r>   r@   N)r:   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   utils.backbone_utilsr   r   
get_loggerr6   loggerr   r@   __all__r   r>   r1   <module>r_      s]    # #   3   c 
		H	%\
(*: \
~   1
2r>   