
    fThcO                         S r SSKrSSKJrJr  \(       a   SSKJr  SSKJr  \R                  " \
5      r " S S\5      r " S	 S
\5      r " S S\5      r/ SQrg)zCLVP model configuration    N)TYPE_CHECKINGUnion   )PretrainedConfig)loggingc                      ^  \ rS rSrSrSrSS/r                SU 4S jjr\ SS\	\
\R                  4   S\
S	S
4S jj5       rSrU =r$ )ClvpEncoderConfig   a  
This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
will yield a similar configuration to that of the encoder of the CLVP
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 256):
        Vocabulary size of the CLVP Encoder model.
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    intermediate_size (`int`, *optional*, defaults to 1536):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    projection_dim (`int`, *optional*, defaults to 768):
        Dimensionality of the projection vector.
    num_hidden_layers (`int`, *optional*, defaults to 20):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
    layer_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the layer normalization layers.
    attention_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
    use_rotary_embedding (`bool`, *optional*, defaults to `True`):
        Whether to use rotary_embedding or not.
    use_attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use bias in Query, Key and Value layers during self attention.
    summary_type (`str`, *optional*, defaults to `"mean"`):
        What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
        `"cls_index"` are supported.
    initializer_factor (`float`, *optional*, defaults to 1.0):
        A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
        testing).
    bos_token_id (`int`, *optional*, defaults to 255):
        Beginning of sequence token id.
    eos_token_id (`int`, *optional*, defaults to 0):
        End of sequence token id.

Example:

```python
>>> from transformers import ClvpEncoderConfig, ClvpEncoder

>>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
>>> encoder_configuration = ClvpEncoderConfig()

>>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpEncoder(encoder_configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```clvp_encodertext_configspeech_configc                    > Xl         X l        X0l        X@l        XPl        X`l        Xl        Xpl        Xl        Xl	        Xl
        Xl        Xl        Xl        Xl        UU l        [         TU ]D  " SUUS.UD6  g N)bos_token_ideos_token_id )
vocab_sizehidden_sizeintermediate_sizeprojection_dimnum_hidden_layersnum_attention_headslayer_norm_eps
hidden_actinitializer_factorattention_dropoutdropoutuse_rotary_embeddinguse_attention_biassummary_typer   r   super__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r    r   r   r   kwargs	__class__s                     c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/clvp/configuration_clvp.pyr"   ClvpEncoderConfig.__init__`   s|    ( %&!2,!2#6 ,$"4!2$8!"4(((XlXQWX    pretrained_model_name_or_pathconfig_typereturnr   c                    U R                  U5        U R                  " U40 UD6u  pCX R                  ;  a  [        SU 35      eUR	                  S5      S:X  a  XB   nSU;   aM  [        U S5      (       a<  US   U R                  :w  a)  [        R                  SUS    SU R                   S35        U R                  " U40 UD6$ )NzSWe can only load either 'text_config' or 'speech_config' but you are trying to load
model_typeclvpzYou are using a model of type z  to instantiate a model of type zN. This is not supported for all configurations of models and can yield errors.)
_set_token_in_kwargsget_config_dictbase_config_key
ValueErrorgethasattrr-   loggerwarning	from_dict)clsr)   r*   r$   config_dicts        r&   from_pretrained!ClvpEncoderConfig.from_pretrained   s     	  (!112OZSYZ 111efqers 
 ??<(F2%2K;&73+E+E+VbJcgjguguJuNN0\1J0KKk>>""pr
 }}[3F33r(   )r   r   r   r   r   r   r   r   r   r   r   r   r    r   r   r   )      i   r=         geluh㈵>皙?rB   TFmean      ?   r   )r   )__name__
__module____qualname____firstlineno____doc__r-   r1   r"   classmethodr   strosPathLiker:   __static_attributes____classcell__r%   s   @r&   r	   r	      s    ;z  J$o6O ! #%YN Xe4,1#r{{2B,C4RU4	4 4r(   r	   c                   p   ^  \ rS rSrSrSrSrSSSSS	S
SSSSSSSSSSSSSSSSSSS/ SQ4U 4S jjrSrU =r	$ )ClvpDecoderConfig   a  
This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

The architecture is similar to GPT2.

Args:
    vocab_size (`int`, *optional*, defaults to 8194):
        Vocabulary size of the model.
    max_position_embeddings (`int`, *optional*, defaults to 608):
        The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
        in `GPT2Config`.
    max_text_tokens (`int`, *optional*, defaults to 404):
        The maximum sequence length of text tokens that this model might ever be used with. Similar to
        `n_positions` in `GPT2Config`.
    hidden_size (`int`, *optional*, defaults to 1024):
        Dimensionality of the embeddings and hidden states.
    num_hidden_layers (`int`, *optional*, defaults to 30):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer encoder.
    n_inner (`int`, *optional*):
        Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
    num_mel_attn_blocks (`int`, *optional*, defaults to 6):
        Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
    activation_function (`str`, *optional*, defaults to `"gelu_new"`):
        Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
    resid_pdrop (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    embd_pdrop (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the embeddings.
    attention_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention.
    layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
        The epsilon to use in the layer normalization layers.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    summary_type (`string`, *optional*, defaults to `"cls_index"`):
        Argument used when doing sequence summary.

        Has to be one of the following options:

            - `"last"`: Take the last token hidden state (like XLNet).
            - `"first"`: Take the first token hidden state (like BERT).
            - `"mean"`: Take the mean of all tokens hidden states.
            - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
            - `"attn"`: Not implemented now, use multi-head attention.
    summary_use_proj (`bool`, *optional*, defaults to `True`):
        Whether or not to add a projection after the vector extraction.
    summary_activation (`str`, *optional*):
        Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
    summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
        Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
    summary_first_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio to be used after the projection and activation.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models).
    bos_token_id (`int`, *optional*, defaults to 8192):
        Beginning of sequence token id, used at the start of the generation.
    eos_token_id (`int`, *optional*, defaults to 8193):
        End of sequence token id, used in the method
        [`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
    feature_size (`int`, *optional*, defaults to 80):
        The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
    use_attention_bias (`bool`, *optional*, defaults to `True`):
        Whether to use bias in Query, Key and Value layers during self attention.
    initializer_factor (`float`, *optional*, defaults to 1.0):
        A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
        testing).
    decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
        These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.

Example:

```python
>>> from transformers import ClvpDecoderConfig, ClvpDecoder

>>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
>>> decoder_configuration = ClvpDecoderConfig()

>>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpDecoder(decoder_configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```clvp_decoderdecoder_configi   i`  i  i         N   gelu_newrB   rA   g{Gz?	cls_indexTi    i   P   rD   )S   -   r^      c                 z  > Xl         X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl        Xl	        Xl
        Xl        Xl        Xl        Xl        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        UU l        [4        TU ]l  " SUUS.UD6  g r   )r   max_position_embeddingsmax_text_tokensr   r   r   n_innernum_mel_attn_blocksactivation_functionresid_pdrop
embd_pdropr   layer_norm_epsiloninitializer_ranger    summary_use_projsummary_activationsummary_first_dropoutsummary_proj_to_labels	use_cachefeature_sizer   r   decoder_fixing_codesr   r   r!   r"   )r#   r   ra   rb   r   r   r   rc   rd   re   rf   rg   r   rh   ri   r    rj   rk   rm   rl   rn   r   r   ro   r   r   rp   r$   r%   s                               r&   r"   ClvpDecoderConfig.__init__  s    < %'>$.&!2#6 #6 #6 &$!2"4!2( 0"4%:"&<#"("4"4$8!((XlXQWXr(   )re   r   r   rp   rg   r   ro   r   r   ri   rh   ra   rb   rc   r   r   rd   rf   rk   rl   rm   r    rj   r   rn   r   )
rF   rG   rH   rI   rJ   r-   r1   r"   rO   rP   rQ   s   @r&   rS   rS      sr    Zx  J&O  #& #!.7:Y :Yr(   rS   c                   l   ^  \ rS rSrSrSr\\\S.r      SU 4S jjr	\
S\S\S\4S	 j5       rS
rU =r$ )
ClvpConfigi@  a	  
[`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    text_config (`dict`, *optional*):
        Dictionary of configuration options used to initialize the CLVP text encoder.
    speech_config (`dict`, *optional*):
        Dictionary of configuration options used to initialize CLVP speech encoder.
    decoder_config (`dict`, *optional*):
        Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
    projection_dim (`int`, *optional*, defaults to 768):
        Dimensionality of text and speech projection layers.
    logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
        The initial value of the *logit_scale* parameter. Default is used as per the original CLVP implementation.
    initializer_factor (`float`, *optional*, defaults to 1.0):
        A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
        testing).
    kwargs (*optional*):
        Dictionary of keyword arguments.

Example:

```python
>>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration

>>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
>>> configuration = ClvpConfig()

>>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpModelForConditionalGeneration(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

>>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
>>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig

>>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
>>> config_text = ClvpEncoderConfig()
>>> config_speech = ClvpEncoderConfig()
>>> decoder_config = ClvpDecoderConfig()

>>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
```r.   r   r   rV   c                 F  > [         TU ]  " S0 UD6  Uc  0 n[        R                  S5        Uc  0 n[        R                  S5        Uc  0 n[        R                  S5        [	        S0 UD6U l        [	        S0 UD6U l        [        S0 UD6U l        X@l	        XPl
        X`l        g )NzR`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.zT`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.zU`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.r   )r!   r"   r5   infor	   r   r   rS   rV   r   logit_scale_init_valuer   )	r#   r   r   rV   r   rw   r   r$   r%   s	           r&   r"   ClvpConfig.__init__{  s     	"6"KKKlm MKKno!NKKop,;{;.??/A.A,&<#"4r(   r   r   rV   c                 n    U " SUR                  5       UR                  5       UR                  5       S.UD6$ )a'  
Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
configuration and CLVP decoder model configuration.

Args:
    text_config (`ClvpEncoderConfig`):
        Text model configuration of type [`ClvpEncoderConfig`].
    speech_config (`ClvpEncoderConfig`):
        Speech model configuration of type [`ClvpEncoderConfig`].
    decoder_config (`ClvpDecoderConfig`):
        Decoder model configuration of type [`ClvpDecoderConfig`].

Returns:
    [`ClvpConfig`]: An instance of a configuration object
rt   r   )to_dict)r8   r   r   rV   r$   s        r&   from_sub_model_configs!ClvpConfig.from_sub_model_configs  sD    0  
#++-'//1)113
 	
 	
r(   )rV   r   rw   r   r   r   )NNNr=   g/L
F@rD   )rF   rG   rH   rI   rJ   r-   r	   rS   sub_configsr"   rK   r{   rO   rP   rQ   s   @r&   rs   rs   @  sj    1f J(*+K %5@ 
&
 )
 *	
 
r(   rs   )rs   rS   r	   )rJ   rM   typingr   r   configuration_utilsr   utilsr   
get_loggerrF   r5   r	   rS   rs   __all__r   r(   r&   <module>r      sj     	 '  3  
		H	%A4( A4HZY( ZYzx
! x
v Cr(   