
    fThK                         S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      r " S S\5      r	 " S S	\5      r
/ S
Qrg)zCLIPSeg model configuration   )PretrainedConfig)loggingc                   T   ^  \ rS rSrSrSrSr              SU 4S jjrSrU =r	$ )CLIPSegTextConfig   aH  
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 49408):
        Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
        by the `inputs_ids` passed when calling [`CLIPSegModel`].
    hidden_size (`int`, *optional*, defaults to 512):
        Dimensionality of the encoder layers and the pooler layer.
    intermediate_size (`int`, *optional*, defaults to 2048):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 8):
        Number of attention heads for each attention layer in the Transformer encoder.
    max_position_embeddings (`int`, *optional*, defaults to 77):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
    layer_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the layer normalization layers.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    initializer_factor (`float`, *optional*, defaults to 1.0):
        A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
        testing).
    pad_token_id (`int`, *optional*, defaults to 1):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 49406):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 49407):
        End of stream token id.

Example:

```python
>>> from transformers import CLIPSegTextConfig, CLIPSegTextModel

>>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegTextConfig()

>>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegTextModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```clipseg_text_modeltext_configc                    > [         TU ]  " SXUS.UD6  Xl        X l        X0l        X@l        XPl        X`l        Xl        Xpl	        Xl
        Xl        Xl        g )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actinitializer_rangeinitializer_factorattention_dropout)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                   i/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/clipseg/configuration_clipseg.pyr   CLIPSegTextConfig.__init__V   s^    $ 	sl\hslrs$&!2!2#6 '>$,$!2"4!2    )r   r   r   r   r   r   r   r   r   r   r   )i               M   
quick_geluh㈵>        {Gz?      ?   i  i  
__name__
__module____qualname____firstlineno____doc__
model_typebase_config_keyr   __static_attributes____classcell__r   s   @r   r   r      sK    8t &J#O  "3 3r!   r   c                   P   ^  \ rS rSrSrSrSr            SU 4S jjrSrU =r	$ )CLIPSegVisionConfigw   a
  
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    image_size (`int`, *optional*, defaults to 224):
        The size (resolution) of each image.
    patch_size (`int`, *optional*, defaults to 32):
        The size (resolution) of each patch.
    hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
    layer_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the layer normalization layers.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    initializer_factor (`float`, *optional*, defaults to 1.0):
        A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
        testing).

Example:

```python
>>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel

>>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegVisionConfig()

>>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegVisionModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```clipseg_vision_modelvision_configc                    > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        Xpl        X`l        Xl	        Xl
        Xl        Xl        Xl        g )Nr   )r   r   r   r   r   r   num_channels
patch_size
image_sizer   r   r   r   r   )r   r   r   r   r   r>   r@   r?   r   r   r   r   r   r   r   s                 r   r   CLIPSegVisionConfig.__init__   sZ      	"6"&!2!2#6 ($$!2"4!2,$r!   )r   r   r   r@   r   r   r   r   r   r>   r   r?   )i   i   r$   r$   r          r'   r(   r)   r*   r+   r-   r7   s   @r   r9   r9   w   sE    2h (J%O % %r!   r9   c                   v   ^  \ rS rSrSrSr\\S.rSSSS/ SQS	S
SSSSS4U 4S jjr	\
S\S\4S j5       rSrU =r$ )CLIPSegConfig   aN  
[`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    text_config (`dict`, *optional*):
        Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
    vision_config (`dict`, *optional*):
        Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
    projection_dim (`int`, *optional*, defaults to 512):
        Dimensionality of text and vision projection layers.
    logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
        The initial value of the *logit_scale* parameter. Default is used as per the original CLIPSeg implementation.
    extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
        Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
    reduce_dim (`int`, *optional*, defaults to 64):
        Dimensionality to reduce the CLIP vision embedding.
    decoder_num_attention_heads (`int`, *optional*, defaults to 4):
        Number of attention heads in the decoder of CLIPSeg.
    decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
    decoder_intermediate_size (`int`, *optional*, defaults to 2048):
        Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
    conditional_layer (`int`, *optional*, defaults to 0):
        The layer to use of the Transformer encoder whose activations will be combined with the condition
        embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
    use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
        Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
        segmentation.
    kwargs (*optional*):
        Dictionary of keyword arguments.

Example:

```python
>>> from transformers import CLIPSegConfig, CLIPSegModel

>>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegConfig()

>>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

>>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig

>>> # Initializing a CLIPSegText and CLIPSegVision configuration
>>> config_text = CLIPSegTextConfig()
>>> config_vision = CLIPSegVisionConfig()

>>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
```clipsegr	   r<   Nr"   g/L
F@)r      	   @      r)   r'   r#       Fc                 h  > UR                  SS 5      nUR                  SS 5      n[        TU ]  " S0 UD6  Ub  Uc  0 n[        S0 UD6R	                  5       nUR                  5        HL  u  nnUU;   d  M  UUU   :w  d  M  US;  d  M!  UU;   a
  SU SU S3nOSU S3n[        R                  U5        MN     UR                  U5        Ub  Uc  0 n[        S0 UD6R	                  5       nS	U;   a6  US	   R                  5        VVs0 s H  u  nn[        U5      U_M     snnUS	'   UR                  5        HL  u  nnUU;   d  M  UUU   :w  d  M  US;  d  M!  UU;   a
  SU S
U S3nOSU S3n[        R                  U5        MN     UR                  U5        Uc  0 n[        R                  S5        Uc  0 n[        R                  S5        [        S0 UD6U l        [        S0 UD6U l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl        Xl        Xl        SU l        Xl        g s  snnf )Ntext_config_dictvision_config_dict)transformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zm`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The value `text_config["z"]` will be overridden.id2labelzv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zs`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. The value `vision_config["zR`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.zV`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.r+   r   )popr   r   r   to_dictitemsloggerinfoupdater9   strr	   r<   projection_dimlogit_scale_init_valueextract_layers
reduce_dimdecoder_num_attention_headsdecoder_attention_dropoutdecoder_hidden_actdecoder_intermediate_sizeconditional_layerr   "use_complex_transposed_convolution)r   r	   r<   r[   r\   r]   r^   r_   r`   ra   rb   rc   rd   r   rO   rP   _text_config_dictkeyvaluemessage_vision_config_dictr   s                        r   r   CLIPSegConfig.__init__  s   & "::&8$?#ZZ(<dC"6"
 '"  !2 E4D E M M O 0557
U+%%;s3C*CSkHk..u %<<?5@Y[  336%7NP   KK( 8" 01)$ " #6"K8J"K"S"S"U006I*6U6[6[6]36]
UCHeO6]3#J/
 2779
U-'E]35G,GCWoLo00u %FFIUJce  99<=TV   KK( :"   !45KKKlm MKKpq,;{;0A=A,&<#,$+F()B&"4)B&!2"%2T/[3s   H.r	   r<   c                 P    U " SUR                  5       UR                  5       S.UD6$ )z
Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
model configuration.

Returns:
    [`CLIPSegConfig`]: An instance of a configuration object
rH   r   )rU   )clsr	   r<   r   s       r   from_text_vision_configs&CLIPSegConfig.from_text_vision_configs  s,     f{224MDYDYD[f_effr!   )rc   r`   ra   rb   r_   r]   r   r\   r[   r^   r	   rd   r<   )r.   r/   r0   r1   r2   r3   r   r9   sub_configsr   classmethodrm   r5   r6   r7   s   @r   rE   rE      sq    =~ J"3FYZK % $%"%'"&+0kUZ 	g3D 	gUh 	g 	gr!   rE   )rE   r   r9   N)r2   configuration_utilsr   utilsr   
get_loggerr.   rW   r   r9   rE   __all__r   r!   r   <module>ru      s\    " 3  
		H	%\3( \3~U%* U%pzg$ zgz Hr!   