
    fTh&                     D    S r SSKrSSKJr  SSKJr   " S S\5      rS/rg)z%
Image/Text processor class for CLIP
    N   )ProcessorMixin)BatchEncodingc                      ^  \ rS rSrSrSS/rSrSrSU 4S jjrSS jr	S	 r
S
 r\S 5       r\S 5       r\S 5       rSrU =r$ )CLIPProcessor   a  
Constructs a CLIP processor which wraps a CLIP image processor and a CLIP tokenizer into a single processor.

[`CLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`CLIPTokenizerFast`]. See the
[`~CLIPProcessor.__call__`] and [`~CLIPProcessor.decode`] for more information.

Args:
    image_processor ([`CLIPImageProcessor`], *optional*):
        The image processor is a required input.
    tokenizer ([`CLIPTokenizerFast`], *optional*):
        The tokenizer is a required input.
image_processor	tokenizer)CLIPImageProcessorCLIPImageProcessorFast)CLIPTokenizerCLIPTokenizerFastc                    > S nSU;   a,  [         R                  " S[        5        UR                  S5      nUb  UOUnUc  [	        S5      eUc  [	        S5      e[
        TU ]  X5        g )Nfeature_extractorzhThe `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor` instead.z)You need to specify an `image_processor`.z"You need to specify a `tokenizer`.)warningswarnFutureWarningpop
ValueErrorsuper__init__)selfr	   r
   kwargsr   	__class__s        `/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/clip/processing_clip.pyr   CLIPProcessor.__init__+   su     &(MM
 !'

+> ?-<-H/N_"HIIABB4    c                 
   0 0 peU(       a~  UR                  5        VVs0 s H"  u  pxXpR                  R                  ;  d  M   Xx_M$     nnnUR                  5        VVs0 s H"  u  pxXpR                  R                  ;   d  M   Xx_M$     nnnUc  Uc  [        S5      eUb  U R                  " U4SU0UD6n	Ub  U R                  " U4SU0UD6n
Ub  Ub  W
R
                  W	S'   U	$ Ub  W	$ [        [        S0 W
D6US9$ s  snnf s  snnf )a  
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.

Args:
    text (`str`, `List[str]`, `List[List[str]]`):
        The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
        (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
        `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
    images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
        The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
        tensor. Both channels-first and channels-last formats are supported.

    return_tensors (`str` or [`~utils.TensorType`], *optional*):
        If set, will return tensors of a particular framework. Acceptable values are:

        - `'tf'`: Return TensorFlow `tf.constant` objects.
        - `'pt'`: Return PyTorch `torch.Tensor` objects.
        - `'np'`: Return NumPy `np.ndarray` objects.
        - `'jax'`: Return JAX `jnp.ndarray` objects.

Returns:
    [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

    - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
    - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
      `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
      `None`).
    - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
z?You have to specify either text or images. Both cannot be none.return_tensorspixel_values)datatensor_type )itemsr	   _valid_processor_keysr   r
   r    r   dict)r   textimagesr   r   tokenizer_kwargsimage_processor_kwargskvencodingimage_featuress              r   __call__CLIPProcessor.__call__=   s   D 46r017w1L`L`LvLvCvw!'&!/18L8L8b8b3b # & <FN^__~~d^>^M]^H!11&rr[qrN 2'5'B'BH^$OO d&<^&<.YY)  x&s   C9C9C? C?c                 :    U R                   R                  " U0 UD6$ )z
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
)r
   batch_decoder   argsr   s      r   r2   CLIPProcessor.batch_decodew   s    
 ~~**D;F;;r   c                 :    U R                   R                  " U0 UD6$ )z
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
)r
   decoder3   s      r   r7   CLIPProcessor.decode~   s    
 ~~$$d5f55r   c                     U R                   R                  nU R                  R                  n[        [        R                  X-   5      5      $ )N)r
   model_input_namesr	   listr&   fromkeys)r   tokenizer_input_namesimage_processor_input_namess      r   r:   CLIPProcessor.model_input_names   s<     $ @ @&*&:&:&L&L#DMM"7"UVWWr   c                 P    [         R                  " S[        5        U R                  $ )Nzg`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.)r   r   r   image_processor_classr   s    r   feature_extractor_class%CLIPProcessor.feature_extractor_class   s"    u	
 )))r   c                 P    [         R                  " S[        5        U R                  $ )Nz[`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.)r   r   r   r	   rB   s    r   r   CLIPProcessor.feature_extractor   s"    i	
 ###r   r#   )NN)NNN)__name__
__module____qualname____firstlineno____doc__
attributesrA   tokenizer_classr   r/   r2   r7   propertyr:   rC   r   __static_attributes____classcell__)r   s   @r   r   r      ss     $[1JL<O5$8Zt<6 X X
 * * $ $r   r   )rK   r   processing_utilsr   tokenization_utils_baser   r   __all__r#   r   r   <module>rT      s.     . 4@$N @$F 
r   