
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zBitNet model configuration   )PretrainedConfig)loggingc                   ^   ^  \ rS rSrSrSrS/r                  SU 4S jjrSrU =r	$ )BitNetConfig   a  
This is the configuration class to store the configuration of a [`BitNetModel`]. It is used to instantiate an BitNet
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of
BitNet b1.58 2B4T [microsoft/bitnet-b1.58-2B-4T](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 128256):
        Vocabulary size of the BitNet model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`BitNetModel`]
    hidden_size (`int`, *optional*, defaults to 2560):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 6912):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 30):
        Number of hidden layers in the Transformer decoder.
    num_attention_heads (`int`, *optional*, defaults to 20):
        Number of attention heads for each attention layer in the Transformer decoder.
    num_key_value_heads (`int`, *optional*, defaults to 5):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
        `num_attention_heads`.
    hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 2048):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 128000):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 128001):
        End of stream token id.
    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
        Whether to tie weight embeddings
    rope_theta (`float`, *optional*, defaults to 500000.0):
        The base period of the RoPE embeddings.
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.

```python
>>> from transformers import BitNetModel, BitNetConfig

>>> # Initializing a BitNet style configuration
>>> configuration = BitNetConfig()

>>> # Initializing a model from the BitNet style configuration
>>> model = BitNetModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```bitnetpast_key_valuesc                    > Xl         Xl        X l        X0l        X@l        XPl        Uc  UnX`l        Xpl        Xl        Xl	        Xl
        UU l        UU l        UU l        [        TU ]<  " SUUUUS.UD6  g )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropoutsuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                       g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/bitnet/configuration_bitnet.pyr   BitNetConfig.__init__`   s    , %'>$&!2!2#6  &"5#6 $!2("$,!2 	
%%% 3		

 	
    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   )i  i 
  i            relu2i   g{Gz?gh㈵>TNi  i Fg    AFg        )
__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencer   __static_attributes____classcell__)r"   s   @r#   r   r      s\    CJ J#4"5  $!'0
 0
r%   r   N)
r.   configuration_utilsr   utilsr   
get_loggerr*   loggerr   __all__r   r%   r#   <module>r8      s<    ! 3  
		H	%y
# y
x 
r%   