
    eTh                     l    S r SSKJr  SSKJr  SSKJr  SSKJr   " S S\5      r	 " S	 S
\5      r
SS
/rg)zALBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfigc                   \   ^  \ rS rSrSrSr                    SU 4S jjrSrU =r$ )AlbertConfig   a  
This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used
to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating
a configuration with the defaults will yield a similar configuration to that of the ALBERT
[albert/albert-xxlarge-v2](https://huggingface.co/albert/albert-xxlarge-v2) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 30000):
        Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
    embedding_size (`int`, *optional*, defaults to 128):
        Dimensionality of vocabulary embeddings.
    hidden_size (`int`, *optional*, defaults to 4096):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_hidden_groups (`int`, *optional*, defaults to 1):
        Number of groups for the hidden layers, parameters in the same group are shared.
    num_attention_heads (`int`, *optional*, defaults to 64):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 16384):
        The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
    inner_group_num (`int`, *optional*, defaults to 1):
        The number of inner repetition of attention and ffn.
    hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
        The dropout ratio for the attention probabilities.
    max_position_embeddings (`int`, *optional*, defaults to 512):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        (e.g., 512 or 1024 or 2048).
    type_vocab_size (`int`, *optional*, defaults to 2):
        The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
        The dropout ratio for attached classifiers.
    position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
        Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
        positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
        [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
        For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
        with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
    pad_token_id (`int`, *optional*, defaults to 0):
        Padding token id.
    bos_token_id (`int`, *optional*, defaults to 2):
        Beginning of stream token id.
    eos_token_id (`int`, *optional*, defaults to 3):
        End of stream token id.

Examples:

```python
>>> from transformers import AlbertConfig, AlbertModel

>>> # Initializing an ALBERT-xxlarge style configuration
>>> albert_xxlarge_configuration = AlbertConfig()

>>> # Initializing an ALBERT-base style configuration
>>> albert_base_configuration = AlbertConfig(
...     hidden_size=768,
...     num_attention_heads=12,
...     intermediate_size=3072,
... )

>>> # Initializing a model (with random weights) from the ALBERT-base style configuration
>>> model = AlbertModel(albert_xxlarge_configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```albertc                    > [         TU ]  " SUUUS.UD6  Xl        X l        X0l        X@l        XPl        X`l        Xl        Xl	        Xpl
        Xl        Xl        Xl        Xl        Xl        Xl        UU l        UU l        g )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizeembedding_sizehidden_sizenum_hidden_layersnum_hidden_groupsnum_attention_headsinner_group_num
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsclassifier_dropout_probposition_embedding_type)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r   r   r   kwargs	__class__s                         g/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/albert/configuration_albert.pyr   AlbertConfig.__init__l   s    0 	sl\hslrs$,&!2!2#6 .$!2#6 ,H)'>$.!2,'>$'>$    )r   r"   r   r   r   r   r    r   r   r!   r   r   r   r   r#   r   r   )i0u     i         @   i @  r,   gelu_newr   r   i      g{Gz?g-q=g?absoluter   r/   r   )	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r&   s   @r'   r	   r	      sY    N` J %& # # *+*? *?r)   r	   c                   @    \ rS rSr\S\\\\\4   4   4S j5       rSr	g)AlbertOnnxConfig   returnc                 b    U R                   S:X  a  SSSS.nOSSS.n[        SU4SU4S	U4/5      $ )
Nzmultiple-choicebatchchoicesequence)r   r,   r/   )r   r,   	input_idsattention_masktoken_type_ids)taskr   )r$   dynamic_axiss     r'   inputsAlbertOnnxConfig.inputs   sO    99))&8
CL&:6Ll+!<0!<0
 	
r)   r   N)
r1   r2   r3   r4   propertyr   strintrF   r7   r   r)   r'   r:   r:      s.    
WS#X%6 67 
 
r)   r:   N)r5   collectionsr   typingr   configuration_utilsr   onnxr   r	   r:   __all__r   r)   r'   <module>rP      s?     ! #  3 }?# }?B
z 
  -
.r)   