
    h                        S SK Jr  S SKJr  S SKJrJr  S SKJrJ	r	  S SK
Jr  SSKJr  SSKJr  S	S
KJrJrJr  S	SKJr  S	SKJrJrJr  S	SKJrJrJr  / SQr " S S\R@                  5      r! " S S\R@                  5      r"S\S\#S\!4S jr$ " S S\5      r%\" 5       \" S\%RL                  4S\RN                  4S9SSS\RN                  S.S\\%   S \(S\\#   S!\\   S"\S\!4S# jj5       5       r)g)$    )OrderedDict)partial)AnyOptional)nnTensor)
functional   )SemanticSegmentation)_log_api_usage_once   )register_modelWeightsWeightsEnum)_VOC_CATEGORIES)_ovewrite_value_paramhandle_legacy_interfaceIntermediateLayerGetter)mobilenet_v3_largeMobileNet_V3_Large_WeightsMobileNetV3)LRASPP!LRASPP_MobileNet_V3_Large_Weightslraspp_mobilenet_v3_largec                   ~   ^  \ rS rSrSr SS\R                  S\S\S\S\SS	4U 4S
 jjjrS\	S\
\\	4   4S jrSrU =r$ )r      a  
Implements a Lite R-ASPP Network for semantic segmentation from
`"Searching for MobileNetV3"
<https://arxiv.org/abs/1905.02244>`_.

Args:
    backbone (nn.Module): the network used to compute the features for the model.
        The backbone should return an OrderedDict[Tensor], with the key being
        "high" for the high level feature map and "low" for the low level feature map.
    low_channels (int): the number of channels of the low level features.
    high_channels (int): the number of channels of the high level features.
    num_classes (int, optional): number of output classes of the model (including the background).
    inter_channels (int, optional): the number of channels for intermediate computations.
backbonelow_channelshigh_channelsnum_classesinter_channelsreturnNc                 f   > [         TU ]  5         [        U 5        Xl        [	        X#XE5      U l        g )N)super__init__r   r   
LRASPPHead
classifier)selfr   r   r   r    r!   	__class__s         ^/var/www/auris/envauris/lib/python3.13/site-packages/torchvision/models/segmentation/lraspp.pyr%   LRASPP.__init__#   s+     	D! $\+^    inputc                     U R                  U5      nU R                  U5      n[        R                  " X1R                  SS  SSS9n[        5       nX4S'   U$ )NbilinearFsizemodealign_cornersout)r   r'   Finterpolateshaper   )r(   r-   featuresr5   results        r*   forwardLRASPP.forward+   sO    =='ooh'mmCkk"#&6ZW\]ur,   )r   r'   )   )__name__
__module____qualname____firstlineno____doc__r   Moduleintr%   r   dictstrr;   __static_attributes____classcell__r)   s   @r*   r   r      sv      sv_		_14_EH_WZ_lo_	_ _V S&[(9  r,   r   c            
       \   ^  \ rS rSrS\S\S\S\SS4
U 4S jjrS	\\\4   S\4S
 jr	Sr
U =r$ )r&   6   r   r   r    r!   r"   Nc           
        > [         TU ]  5         [        R                  " [        R                  " X$SSS9[        R
                  " U5      [        R                  " SS95      U l        [        R                  " [        R                  " S5      [        R                  " X$SSS9[        R                  " 5       5      U l
        [        R                  " XS5      U l        [        R                  " XCS5      U l        g )N   F)biasT)inplace)r$   r%   r   
SequentialConv2dBatchNorm2dReLUcbrAdaptiveAvgPool2dSigmoidscalelow_classifierhigh_classifier)r(   r   r   r    r!   r)   s        r*   r%   LRASPPHead.__init__7   s    ==IImQUCNN>*GGD!

 ]]  #IImQUCJJL


 !ii1E!yyaHr,   r-   c                     US   nUS   nU R                  U5      nU R                  U5      nXE-  n[        R                  " XBR                  SS  SSS9nU R                  U5      U R                  U5      -   $ )Nlowhighr/   r0   Fr1   )rT   rW   r6   r7   r8   rX   rY   )r(   r-   r\   r]   xss         r*   r;   LRASPPHead.forwardF   st    ElV}HHTNJJtEMM!))BC.zQVW""3'$*>*>q*AAAr,   )rT   rY   rX   rW   )r>   r?   r@   rA   rD   r%   rE   rF   r   r;   rG   rH   rI   s   @r*   r&   r&   6   sX    IS I I3 I`c Ihl I	BT#v+. 	B6 	B 	Br,   r&   r   r    r"   c           
      Z   U R                   n S/[        U 5       VVs/ s H  u  p#[        USS5      (       d  M  UPM     snn-   [        U 5      S-
  /-   nUS   nUS   nX   R                  nX   R                  n[        U [        U5      S[        U5      S0S	9n [        XX5      $ s  snnf )
Nr   _is_cnFrM   r\   r]   )return_layers)r9   	enumerategetattrlenout_channelsr   rF   r   )	r   r    ibstage_indiceslow_poshigh_posr   r   s	            r*   _lraspp_mobilenetv3ro   R   s      H C8)<\)<8UZ@[1)<\\`cdl`mpq`q_rrMBGR H$11L&33M&xGeUXYaUbdj?klH(-EE ]s
   B'B'c                   N    \ rS rSr\" S\" \SS9S\SSSS	S
S.0SSSS.S9r\r	Sr
g)r   `   zJhttps://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pthi  )resize_sizei"(1 )rM   rM   z]https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_largezCOCO-val2017-VOC-labelsg33333L@gV@)miou	pixel_accg㥛  @g{G(@z
                These weights were trained on a subset of COCO, using only the 20 categories that are present in the
                Pascal VOC dataset.
            )
num_params
categoriesmin_sizerecipe_metrics_ops
_file_size_docs)url
transformsmeta N)r>   r?   r@   rA   r   r   r   r   COCO_WITH_VOC_LABELS_V1DEFAULTrG   r   r,   r*   r   r   `   sS    %X/SA!)u) !%, 
, &Gr,   r   
pretrainedpretrained_backbone)weightsweights_backboneNT)r   progressr    r   r   r   r   kwargsc                 j   UR                  SS5      (       a  [        S5      e[        R                  U 5      n [        R                  " U5      nU b&  Sn[        SU[        U R                  S   5      5      nOUc  Sn[        USS	9n[        XR5      nU b  UR                  U R                  USS
95        U$ )a(  Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper.

.. betastatus:: segmentation module

Args:
    weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The
        pretrained weights to use. See
        :class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for
        more details, and possible values. By default, no pre-trained
        weights are used.
    progress (bool, optional): If True, displays a progress bar of the
        download to stderr. Default is True.
    num_classes (int, optional): number of output classes of the model (including the background).
    aux_loss (bool, optional): If True, it uses an auxiliary loss.
    weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
        weights for the backbone.
    **kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP``
        base class. Please refer to the `source code
        <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_
        for more details about this class.

.. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights
    :members:
aux_lossFz&This model does not use auxiliary lossNr    rv      T)r   dilated)r   
check_hash)popNotImplementedErrorr   verifyr   r   rh   r   r   ro   load_state_dictget_state_dict)r   r   r    r   r   r   models          r*   r   r   z   s    L zz*e$$!"JKK/66w?G1889IJ+M;GLLYeLfHgh		!*:DIH6Eg44hSW4XYLr,   )*collectionsr   	functoolsr   typingr   r   torchr   r   torch.nnr	   r6   transforms._presetsr   utilsr   _apir   r   r   _metar   _utilsr   r   r   mobilenetv3r   r   r   __all__rC   r   r&   rD   ro   r   r   IMAGENET1K_V1boolr   r   r,   r*   <module>r      s%   #     $ 7 ( 7 7 # \ \ U U W RYY  FB B8F+ FC FF F& &4 <TTU+-G-U-UV <@!%=W=e=e3783 3 #	3
 9:3 3 3	 
3r,   