
    JThC                         S SK JrJrJr  S SKrS SKJr  SSKJrJrJ	r	J
r
JrJrJrJrJrJrJrJrJrJr  SS/r " S S\5      rS	S
\ S\ S\ S\	 S\ S3-   \l        S\\   S\\   S\\   S\\   S\\   S\S\S\S\S\S\S\S\S\4S jrS\\   S\\   S\\   S\\   S\\   S\S\S\S\S\S\S\S\S\4S jr\
" \S9     S!S\\   S\\   S\\   S\\   S\\   S\\   S\S\S\S\S\S\S\S\S\4S  jj5       rg)"    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc_use_grad_for_differentiable_view_as_real	OptimizerParamsTAdamaxadamaxc                      ^  \ rS rSr     SSSSS.S\S\\\4   S\\\4   S\S\S	\	\
   S
\
S\
S\
4U 4S jjjjrU 4S jrS r\SS j5       rSrU =r$ )r      F)maximizedifferentiable
capturableparamslrbetasepsweight_decayforeachr   r   r   c                  > [        U[        5      (       a  UR                  5       S:w  a  [        S5      eSU::  d  [        SU 35      eSU::  d  [        SU 35      eSUS   s=::  a  S:  d  O  [        SUS    35      eSUS   s=::  a  S:  d  O  [        S	US    35      eSU::  d  [        S
U 35      e[	        UUUUUUUU	S9n
[
        TU ]  X5        g )Nr   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )r   r   r    r!   r"   r   r   r   )
isinstancer   numel
ValueErrordictsuper__init__)selfr   r   r   r    r!   r"   r   r   r   defaults	__class__s              J/var/www/auris/envauris/lib/python3.13/site-packages/torch/optim/adamax.pyr+   Adamax.__init__   s     b&!!bhhjAo:;;by6rd;<<cz6se<==eAh$$B58*MNNeAh$$B58*MNNl";L>JKK%)!	
 	*    c                 P  > [         TU ]  U5        U R                   GH  nUR                  SS 5        UR                  SS5        UR                  SS5        UR                  SS5        US    H  nU R                  R                  U/ 5      n[        U5      S:w  d  M0  [        R                  " US   5      (       a  MP  [        US   5      nUS   (       a(  [        R                  " U[        5       UR                  S	9O[        R                  " U[        5       S
9US'   M     GM     g )Nr"   r   Fr   r   r   r   stepdtypedevicer5   )r*   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r6   )r,   r;   grouppp_statestep_valr.   s         r/   r8   Adamax.__setstate__C   s    U#&&EY-Z/-u5\518_**..B/w<1$U__WV_-M-M$WV_5H
 !. $,=,? #\\(:K:MN FO	 % 'r1   c                 
   SnUS    GHv  nUR                   c  M  U[        R                  " U5      -  nUR                  U5        UR                   R                  (       a  [        S5      eUR                  UR                   5        U R                  U   n	[        U	5      S:X  a  US   (       a(  [        R                  " S[        5       UR                  S9O[        R                  " S[        5       S	9U	S
'   [        R                  " U[        R                  S9U	S'   [        R                  " U[        R                  S9U	S'   UR                  U	S   5        UR                  U	S   5        UR                  U	S
   5        GMy     U$ )NFr   z(Adamax does not support sparse gradientsr   r    r4   r$   r7   r3   )memory_formatexp_avgexp_inf)gradr>   
is_complexappend	is_sparseRuntimeErrorr;   r=   zerosr   r6   rA   
zeros_likepreserve_format)
r,   rB   params_with_gradgradsexp_avgsexp_infsstate_stepshas_complexrC   r;   s
             r/   _init_groupAdamax._init_groupV   sJ    xAvv~5++A..K##A&vv"#MNNLL JJqME 5zQ \* KK*;*=ahhOc1B1DE f
 $)#3#3U%:%:$i  $)#3#3U%:%:$i  OOE),-OOE),-uV}-7 !: r1   c                 ~   U R                  5         SnUb%  [        R                  " 5          U" 5       nSSS5        U R                   Ha  n/ n/ n/ n/ n/ nUS   u  pUS   nUS   nUS   nUS   nUS   nUS   nUS	   nU R	                  X4XVXx5      n[        UUUUUUU	U
UUUUUUUS
9  Mc     U$ ! , (       d  f       N= f)zPerforms a single optimization step.

Args:
    closure (Callable, optional): A closure that reevaluates the model
        and returns the loss.
Nr   r    r   r!   r"   r   r   r   )
r    beta1beta2r   r!   r"   r   r   r   rY   ) _cuda_graph_capture_health_checkr>   enable_gradr9   rZ   r   )r,   closurelossrB   rT   rU   rV   rW   rX   r]   r^   r    r   r!   r"   r   r   r   rY   s                      r/   r3   Adamax.stepy   s    	--/""$y % &&E-/"$E%'H%'H(*K >LE,CtB 0LI&GZ(H"#34N|,J**(K  )!-%') 'L S %$s   B..
B<rH   )gMb`?)g?g+?g:0yE>r   NN)__name__
__module____qualname____firstlineno__r   r   r@   r   tupler   boolr+   r8   rZ   r   r3   __static_attributes____classcell__)r.   s   @r/   r   r      s     $(%1"&$+ $ $+$+ %- $+ UE\"	$+
 $+ $+ $$+ $+ $+ $+ $+L&!F "4 "4r1   a  Implements Adamax algorithm (a variant of Adam based on infinity norm).

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
                \: \lambda \text{ (weight decay)},                                                \\
            &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\
            &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 2e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980

    r   rU   rV   rW   rX   r    r]   r^   r   r!   r   r   r   rY   c       	   	      "   [        U 5       GH  u  pX   nU
(       d  UOU* nX.   nX>   nXN   n[        R                  R                  5       (       dd  U(       a]  [	        5       nUR
                  R                  UR
                  R                  :X  a  UR
                  R                  U;   d   SU S35       eUS-  nU	S:w  a  UR                  XS9n[        R                  " U5      (       aX  [        R                  " U5      n[        R                  " U5      n[        R                  " U5      n[        R                  " U5      nUR                  USU-
  5        U(       dC  [        R                  " UR                  U5      UR                  5       R                  U5      US9  O[        R                  " UR                  U5      R!                  S5      UR                  5       R                  U5      R#                  S5      /S5      nUR%                  [        R&                  " USSS95        U(       a3  UU-  S-
  nUR)                  U5        UU-  nUR+                  UU5        GMW  SU[-        U5      -  -
  nUU-  nUR+                  UUU* S	9  GM     g )
NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alpha)outF)keepdim)value)	enumerater>   compileris_compilingr   r6   typeaddrM   view_as_reallerp_maximummul_absadd_cat	unsqueeze
unsqueeze_copy_amaxdiv_addcdiv_r   )r   rU   rV   rW   rX   r    r]   r^   r   r!   r   r   r   rY   iparamrL   rJ   rK   step_tcapturable_supported_devicesnorm_bufneg_bias_correctiondenombias_correctionclrs                             r/   _single_tensor_adamaxr      s:   " f%x#t$++ ~~**,,+L+N(!!V]]%7%77LL%%)EE{ [[wZxxyz{F
 	!188E86DE""&&u-E%%d+D((1G((1G 	dAI&MMU#
$ yye$..q1488:??33G3R3RST3UVH MM%**Xq%@A #(-!"3$$R(11ENN7E*%:f+="==O&CNN7GC4N8m &r1   c       	   	      "  ^ U(       a   S5       e[        U 5      S:X  a  g [        R                  R                  5       (       d>  U(       a7  [	        SS9m[        U4S j[        X5       5       5      (       d   ST S35       e[        R                  " XX#U/5      nUR                  5        GH  u  u  nnnnnn[        [        [           U5      n[        [        [           U5      n[        [        [           U5      n[        [        [           U5      n[        [        [           U5      nU(       a  [        UUUU5        U
(       a  [        R                  " U5      n[        R                  R                  5       (       d>  US   R                  (       a*  [        R                   " U[        R"                  " SS	S
9SS9  O[        R                   " US5        U	S:w  a4  U
(       a  [        R                   " UUU	S9  O[        R$                  " UUU	S9n[        R&                  " UUSU-
  5        [        R(                  " UU5        U
(       d  U	S:X  a  [        R*                  " U5      nO[        R,                  " U5        [        R                   " UU5        [        R.                  " UU5        U(       aw  [        R0                  " UU5      n[        R2                  " US5        [        R4                  " UU5        [        R6                  " UU5      n[        R8                  " UUU5        GM|  U Vs/ s H  nSU[;        U5      -  -
  PM     nnU Vs/ s H  n[;        U5      U-  S-  PM     nn[        R8                  " UUUU5        GM     g s  snf s  snf )Nz#_foreach ops don't support autogradr   F)supports_xlac              3      >#    U  HT  u  pUR                   R                  UR                   R                  :H  =(       a    UR                   R                  T;   v   MV     g 7frd   )r6   rx   ).0rC   r3   r   s      r/   	<genexpr>'_multi_tensor_adamax.<locals>.<genexpr>F  sN      
 4 HHMMT[[--- >!==>3s   AArn   ro   r%   cpu)r6   rp   r   )r=   r>   rv   rw   r   allzipr   "_group_tensors_by_device_and_dtypevaluesr   listr   r   _foreach_negis_cpu_foreach_add_rA   _foreach_add_foreach_lerp__foreach_mul__foreach_abs_foreach_abs__foreach_maximum__foreach_pow_foreach_sub__foreach_div__foreach_mul_foreach_addcdiv_r   ) r   rU   rV   rW   rX   r    r]   r^   r   r!   r   r   r   rY   grouped_tensorsgrouped_params_grouped_grads_grouped_exp_avgs_grouped_exp_infs_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_infsgrouped_state_stepsbias_correctionsr   r3   bc	step_sizer   s                                   @r/   _multi_tensor_adamaxr   +  s9   " DDD
6{a >>&&((Z'H(
$  
 v3
 
 
 	w WWsVttuv		w 
  BB	K8O ""$		 	d6lO<T&\>:V.?@V.?@"4<1EF/?AQ !..}=M ~~**,,1DQ1G1N1N#U\\#e%DC  3Q71##M>V % 2 2!>!
 	-}a%iH 	,e4 LA-!..}=M.M3/ 0-@ $11%9LM 0!4 0"5&&'79IJE##N4DeL ;N :M$EZ---:M    ?OO>N*R.2-3>NIO## 02BIC %z  Ps   *NN)single_tensor_fnr"   c
                   [         R                  R                  5       (       d"  [        S U 5       5      (       d  [	        S5      eUc  [        XSS9u  pU(       a.  [         R                  R                  5       (       a  [	        S5      eU(       a*  [         R                  R                  5       (       d  [        nO[        nU" U UUUUU
UUUUUUU	US9  g)zjFunctional API that performs adamax algorithm computation.

See :class:`~torch.optim.Adamax` for details.
c              3   V   #    U  H  n[        U[        R                  5      v   M!     g 7frd   )r&   r>   r   )r   ts     r/   r   adamax.<locals>.<genexpr>  s!      5-8
1ell##[s   ')zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)	r    r]   r^   r   r!   r   r   rY   r   )
r>   rv   rw   r   rP   r	   jitis_scriptingr   r   )r   rU   rV   rW   rX   r"   r   r   r   rY   r    r]   r^   r   r!   r   funcs                    r/   r   r     s    4 >>&&(( 5-85 2 2 ^
 	
 1e

 599))++STTuyy--//#$!%r1   )NFFFF)typingr   r   r   r>   r   	optimizerr   r	   r
   r   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__r   r@   rj   r   r   r   rH   r1   r/   <module>r      s   ( (     $ X
RY Rl4		 	 
 		 		 		 5+ `G9LG9<G9 6lG9 6l	G9
 fG9 
G9 G9 G9 	G9 G9 G9 G9 G9 G9TmLm<m 6lm 6l	m
 fm 
m m m 	m m m m m m`  1FG # <L<<< 6l< 6l	<
 f< d^< < < < < 
< <  !<" 	#<$ %< H<r1   