
    JTh"                        S SK Jr  S SKrS SKJr  S SKr/ SQr\" SSS9r\" SS	S9r S       SS
 jjr	 S                 SS jjr
      SS jr                SS jrg)    )annotationsN)TypeVar)fuse_conv_bn_evalfuse_conv_bn_weightsfuse_linear_bn_evalfuse_linear_bn_weightsConvTztorch.nn.modules.conv._ConvNd)boundLinearTztorch.nn.Linearc           
        U R                   (       d  UR                   (       a   S5       e[        R                  " U 5      nUR                  b  UR                  c   e[        UR                  UR                  UR                  UR                  UR                  UR                  UR                  U5      u  Ul        Ul        U$ )a  Fuse a convolutional module and a BatchNorm module into a single, new convolutional module.

Args:
    conv (torch.nn.modules.conv._ConvNd): A convolutional module.
    bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module.
    transpose (bool, optional): If True, transpose the convolutional weight. Defaults to False.

Returns:
    torch.nn.modules.conv._ConvNd: The fused convolutional module.

.. note::
    Both ``conv`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed.
Fusion only for eval!)	trainingcopydeepcopyrunning_meanrunning_varr   weightbiaseps)convbn	transpose
fused_convs       M/var/www/auris/envauris/lib/python3.13/site-packages/torch/nn/utils/fusion.pyr   r      s    $ F/FF-t$J??&2>>+EEE)=



		
	*&Jz     c                   U R                   nUb  UR                   OUn	Uc  [        R                  " U5      nUc  [        R                  " U5      nUc  [        R                  " U5      n[        R                  " X4-   5      n
U(       a"  SS/S/[        U R                  5      S-
  -  -   nO!SS/S/[        U R                  5      S-
  -  -   nXU
-  R                  U5      -  R                  US9nX-
  U
-  U-  U-   R                  U	S9n[        R                  R                  XR                  5      [        R                  R                  XR                  5      4$ )a  Fuse convolutional module parameters and BatchNorm module parameters into new convolutional module parameters.

Args:
    conv_w (torch.Tensor): Convolutional weight.
    conv_b (Optional[torch.Tensor]): Convolutional bias.
    bn_rm (torch.Tensor): BatchNorm running mean.
    bn_rv (torch.Tensor): BatchNorm running variance.
    bn_eps (float): BatchNorm epsilon.
    bn_w (Optional[torch.Tensor]): BatchNorm weight.
    bn_b (Optional[torch.Tensor]): BatchNorm bias.
    transpose (bool, optional): If True, transpose the conv weight. Defaults to False.

Returns:
    Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused convolutional weight and bias.
      dtype)r!   torch
zeros_like	ones_likersqrtlenshapereshapetonn	Parameterrequires_grad)conv_wconv_bbn_rmbn_rvbn_epsbn_wbn_br   conv_weight_dtypeconv_bias_dtypebn_var_rsqrtr'   fused_conv_wfused_conv_bs                 r   r   r   8   sI   2 &,&8fll>OO~!!%(|u%|&;;u~.LB1#V\\!2Q!677Q1#V\\!2Q!677\1::5AAEE F L ^|3d:TAEE F L
 	<)=)=><)=)=> r   c           	        U R                   (       d  UR                   (       a   S5       e[        R                  " U 5      n U R                  UR                  :X  d  UR                  S:X  d   S5       eUR
                  b  UR                  c   e[        UR                  UR                  UR
                  UR                  UR                  UR                  UR                  5      u  Ul        Ul	        U$ )as  Fuse a linear module and a BatchNorm module into a single, new linear module.

Args:
    linear (torch.nn.Linear): A Linear module.
    bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module.

Returns:
    torch.nn.Linear: The fused linear module.

.. note::
    Both ``linear`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed.
r   r   zGTo fuse, linear.out_features == bn.num_features or bn.num_features == 1)r   r   r   out_featuresnum_featuresr   r   r   r   r   r   )linearr   fused_linears      r   r   r   m   s      2;;H1HH/==(L	 	r."//Q2FQPQF ??&2>>+EEE-C



		
.*L* r   c                   U R                   nUb  UR                   OUnUc  [        R                  " U5      nU[        R                  " X4-   5      -  n	X	R	                  S5      R                  US9-  n
X-
  U	-  U-   R                  US9n[        R                  R                  XR                  5      [        R                  R                  XR                  5      4$ )a  Fuse linear module parameters and BatchNorm module parameters into new linear module parameters.

Args:
    linear_w (torch.Tensor): Linear weight.
    linear_b (Optional[torch.Tensor]): Linear bias.
    bn_rm (torch.Tensor): BatchNorm running mean.
    bn_rv (torch.Tensor): BatchNorm running variance.
    bn_eps (float): BatchNorm epsilon.
    bn_w (torch.Tensor): BatchNorm weight.
    bn_b (torch.Tensor): BatchNorm bias.

Returns:
    Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused linear weight and bias.
r   r    )	r!   r"   r#   r%   	unsqueezer)   r*   r+   r,   )linear_wlinear_br/   r0   r1   r2   r3   linear_weight_dtypelinear_bias_dtypebn_scalefused_wfused_bs               r   r   r      s    . #..*2*>DW##E*ekk%.11H++B/229L2MMG H,t377>O7PG88g'='=>@R@R''A  r   )F)r   r	   r   %torch.nn.modules.batchnorm._BatchNormr   boolreturnr	   )r-   torch.Tensorr.   torch.Tensor | Noner/   rJ   r0   rJ   r1   floatr2   rK   r3   rK   r   rH   rI   -tuple[torch.nn.Parameter, torch.nn.Parameter])r<   r   r   rG   rI   r   )r@   rJ   rA   rK   r/   rJ   r0   rJ   r1   rL   r2   rJ   r3   rJ   rI   rM   )
__future__r   r   typingr   r"   __all__r	   r   r   r   r   r    r   r   <module>rR      s5   "    	>?
)#4
5 !
!-! ! 	!X 222 2 	2
 2 2 2 2 32j,,-, ,^""!" " 	"
 " " " 3"r   