
    [Th                     <    S SK JrJr  S SKr\ " S S\5      5       rg)    )Protocolruntime_checkableNc                   n    \ rS rSrSrS\S\S\\   4S jrS\\   4S jr	S\
S\R                  4S	 jrS
rg)_Checkpointable   a  
Interface for checkpointable objects.
Implemented as a protocol, implicit subtyping is supported so subclasses do not need to inherit this explicitly.
This is to allow arbitrary objects/tensor subclasses to hook into DCP seamlessly through implementing the interface.
fqnobjectreturnc                     [        S5      e)z9
Return a list of WriteItems based on object's contents.
z6_Checkpointable._create_write_items is not implementedNotImplementedError)selfr   r	   s      Y/var/www/auris/envauris/lib/python3.13/site-packages/torch/distributed/_checkpointable.py__create_write_items__&_Checkpointable.__create_write_items__   s     "D
 	
    c                     [        S5      e)zE
Return a list of `ChunkStorageMetadata` based on object's contents.
z5_Checkpointable._create_chunk_list is not implementedr   )r   s    r   __create_chunk_list__%_Checkpointable.__create_chunk_list__   s     "C
 	
r   indexc                     [        S5      e)z9
Return a 'torch.Tensor' shard based on 'MetadataIndex'.
z4_Checkpointable._get_tensor_shard is not implementedr   )r   r   s     r   __get_tensor_shard__$_Checkpointable.__get_tensor_shard__   s     "B
 	
r    N)__name__
__module____qualname____firstlineno____doc__strr	   listr   r   inttorchTensorr   __static_attributes__r   r   r   r   r      sL    
# 
v 
$v, 

tF| 

# 
%,, 
r   r   )typingr   r   r#   r   r   r   r   <module>r'      s&    .  
h 
 
r   